
Reference values for oxygen 
saturation from sea level 
to the highest human 
habitation in the Andes in 
acclimatised persons

Abstract 
Oxygen saturation, measured by pulse 
oximetry (SpO2), is a vital clinical measure. Our 
descriptive, cross-sectional study describes 
SpO2 measurements from 6289 healthy 
subjects from age 1 to 80 years at 15 locations 
from sea level up to the highest permanent 
human habitation. Oxygen saturation 
measurements are illustrated as percentiles. As 
altitude increased, SpO2 decreased, especially 
at altitudes above 2500 m. The increase in 
altitude had a significant impact on SpO2 
measurements for all age groups. Our data 
provide a reference range for expected SpO2 
measurements in people from 1 to 80 years 
from sea level to the highest city in the world.

Background
Pulse oximetry has led to a great advance-
ment in patient management offering 
non-invasive estimation of arterial oxygen 
saturation. It is routinely used in emergency 
departments, wards, intensive care and other 
medical situations. At high altitudes, physi-
ological ventilation parameters like plasma 

bicarbonate are different.1 Pulse oximetry 
measurements of oxygen saturation (SpO2) 
are lower at altitude compared with those 
at sea level. However, the expected SpO2 
at a given altitude is unclear and has been 
suggested as a range of values rather than a 
specific number.2

Methods
Subjects
Data were collected from 15 locations 
at different altitudes from sea level to 
the highest permanent human habitation 
located in a remote area at 5100 m in 
Puno, Peru, a city named La Rinconada.3

We recruited subjects between 1 and 80 
years with a minimum of 2 months resi-
dence at the place of evaluation because 
alveolar gas composition is different after 
acclimatisation.4 Exclusion criteria were 
based on history and clinical examination. 
Subjects with a history of the following 
were excluded: habitual smoker (≥1 ciga-
rette day), ongoing pregnancy, chronic 
cardiorespiratory disease, anaemia, poly-
cythaemia or having received a blood 
transfusion in the last 6 months and with 
abnormal findings in physical examina-
tion. Children who were asleep at the 
time of measurement of SpO2 and subjects 
with painted nails or deformities in meas-
urement locations were also excluded. 
Informed consent was obtained from all 
subjects or their guardians.

Measurement of SpO2
SpO2 was measured using a pulse oximeter 
(Nellcor 560, Hayward, California,  USA), 
with sensors appropriate to the weight of the 
subject. SpO2 measurements were recorded 
every 10 s for a total of six measurements 
and the average was used to determine 
SpO2 for each study subject, as described in 
previous studies.5

At the end of the study, we compared 
SpO2 measurements against simultaneous 
measurements of arterial oxygen satura-
tion (SaO2) by arterial blood gases in 10 
hospitalised patients, at sea level. The 
average of (SaO2 –SpO2) was 1.48%. This 
was within the expected value of  ±2% 
for a range of SpO2 measurements 
between 70% and 100% reported by the 
manufacturer.6

To assess the reproducibility of our 
data, at 5100 m, we measured SpO2 
twice in 23 subjects waiting 30 min 
before taking the second measurement. 
For this test, we used the Fingertip Pulse 
Oximeter MD300C1. The average differ-
ence between SpO2 measured by the two 
devices (Nellcor-MD300C1) was −0.8%.

Statistical analysis
Descriptive statistics were used to summa-
rise characteristics of the subjects.

Constructing oxygen centile charts
SpO2 data were entered into Microsoft 
Excel and were analysed and charted using 
Stata (Intercooled 10, Stata Corp, College 
Station, Texas,  USA). The SpO2 centiles 
were calculated using the LMS method 
of Cole and Green7 8 and fitted using the 
LMSChartMaker Light V.2.3 (Institute of 
Child Health, London, England). These 
values were then used to illustrate the 
2.5th, 10th, 25th, 50th, 75th, 90th and 
97.5th centile for SpO2 for each age group 
according to residential altitude  (see 
online supplement).

Results
We studied subjects residing at 15 specific 
altitudes. We initially evaluated 6601 
subjects. Three hundred and twelve met 
exclusion criteria. A total of 6289 subjects 
were studied: 47.2% (n=2967) males and 
52.8% females (n=3322). The median 
(IQR) for all SpO2 measurements at each 
altitude (metre) were respectively: 99 
(98–99) at 154 m; 99 (98–99) at 562 m; 98 
(97–99) at 1400 m; 97 (96–98) at 2000 m; 
97 (96–99) at 2335 m; 96 (95–97) at 
2500 m; 95 (94–96) at 2880 m; (92–95) at 
3250 m; 92 (90–93) at 3600 m; 90 (88–91) 
at 3950 m; 87 (85–89) at 4100 m; 87 
(85–89) at 4338 m; 87 (85–89) at 4500 m; 
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Figure 1  2.5th, 10th, 25th, 50th, 75th, 90th, and 97.5th SpO2 percentiles for all subjects 
according to altitude. (n=6289) distributed by the following altitudes: 154 m (n=709), 562 m 
(n=405), 1400 m (n=315), 2000 m (n=209), 2335 m (n=522), 2500 m (n=416), 2880 m (n=404), 
3250 m (n=422), 3600 m (n=361), 3950 m (n=350), 4100 m (n=644), 4338 m (n=457), 4500 m 
(n=525), 4715 m (n=251), 5100 m (n=299).
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85(83–88) at 4715 m; 81 (78–84) at 5100 m.

Oxygen saturation measurements
SpO2 measurements illustrated as percen-
tiles are shown for all subjects in figure 1, 
and by age group (1–5, 6–17, 18–50 and 
51–80 years) in figure  2. The figures 
show that for all age groups, as altitude 
increased, SpO2 decreased, especially 
at altitudes above 2500 m (see online 
supplement tables).

Discussion
We obtained measurements from over 
6000 subjects, from 1 to 80 years old, 
from sea level to the highest permanent 
human habitation located in Peru at 
5100 m.3 This is the first study to provide 
reference charts for the expected range 
of SpO2 measurements by age group and 
altitude using centiles by the LMS method.

We have shown the expected reduc-
tion of SpO2 with altitude, an effect that 
is more evident at altitudes over 2500 m. 
We have also shown increased variability 
in the range of SpO2 measurements at 
higher altitudes. Our observation could 
be explained by a genetic variability in the 
hypoxic ventilatory response. It is note-
worthy that at 5100 m, the median SpO2 
of 81% could correspond to a PO2 less 

than 50 mm Hg according to the oxygen 
dissociation curve. This is less than half of 
the normal PO2 at sea level.

Pulse oximetry utility in clinical care 
outside the operating theatre has been 
supported by studies at sea level and at high 
altitude.9 Having a reference value for SpO2 
is needed in clinical management at high 
altitude locations.

There are some limitations to our find-
ings and analysis. We did not enrol subjects 
over 80 years or children less than 1 year. 
Our study does not apply to non-acclima-
tised individuals. We did take a clinical 
history and conducted a physical exami-
nation of all subjects. However, we did 
not conduct further testing, such as chest 
radiography, spirometry or haemoglobin 
measurement, to rule out pathology not 
evidenced by clinical examination. There-
fore, in evaluating patients at high altitude, 
their history and clinical presentation must 
be incorporated into deciding whether an 
individual SpO2 measurement should raise 
concern for a patient at their usual resi-
dential altitude.

All our subjects were Andean Natives and 
Hispanics and care should therefore be taken 
in applying these results to other ethnicities 
and to other parts of the world. For example, 
Tibetans have different physiological traits 

for the oxygen delivery process10 and might 
have different SpO2 measurements at the 
same altitude as our subjects.

In conclusion, our data provide a refer-
ence range for SpO2 in people from 1 to 80 
years from sea level to the highest city in the 
world, contributing to global knowledge of 
expected SpO2 measurements at any given 
habitable altitude.
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