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ABSTRACT
Introduction: Infertility is defined as the inability to conceive after unprotected sexual intercourse
for at least 12 consecutive months. Our objective is to present an updated narrative review on the
endocrine causes of infertility in women.

15 Areas covered: A comprehensive review was conducted using Scielo, Scopus, and EMBASE data-
bases, comprising 245 articles. The pathophysiology of infertility in women was described, including
endocrinopathies such as hypothalamic amenorrhea, hyperprolactinemia, polycystic ovary syn-
drome, primary ovarian insufficiency, obesity, thyroid©dysfunction, and adrenal disorders. The
diagnostic approach was outlined, emphasizing the necessity of hormonal studies and ovarian

20 response assessments. Additionally, the treatment plan was presented, commencing with non-
pharmacological interventions, encompassing the adoption of a Mediterranean diet, vitamin sup-
plementation, moderate exercise, and maintaining a healthy weight. Subsequently, pharmacological
treatment was discussed, focusing on the management of associated endocrine disorders and
ovulatory dysfunction.

25 Expert opinion: This comprehensive review highlights the impact of endocrine disorders on fertility
in women, providing diagnostic and therapeutic algorithms. Despite remaining knowledge gaps
that hinder more effective treatments, ongoing research and advancements show promise for
improved fertility success rates within the next five years. Enhanced comprehension of the patho-
physiology behind endocrine causes and the progress in genetic research will facilitate the delivery

30 of personalized treatments, thus enhancing fertility rates.
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1. Introduction

Infertility is a medical disease characterized by the inability
to conceive after engaging in regular unprotected sexual
intercourse for at least 12 consecutive months [1]. It is

35 recognized as a significant public health issue, as it affects
approximately one-sixth of the adult population [2]. In the
United States, the prevalence of infertility in women ranges
from 7.3% to 9.1% among women aged 15 to 34 years, 25%
among women aged 35 to 39 years, and 30% among

40 women aged 40 to 44 years [3].
Approximately 50% of infertility cases are attributed to

female factors [4], among which the most common causes
include ovulatory disorders (32%), endometriosis (25%), pelvic
adhesions (11%), and tubal blockage (11%) [5,6]. Endocrine

45 disorders also play a significant role in the etiology of infertility
in women [7], involving non-reproductive endocrine organs
such as the thyroid, adipose tissue, adrenal glands, and pan-
creas [8].

The objective of this study is to provide an updated narra-
50 tive review on the endocrine causes of infertility in women,

addressing aspects related to their pathophysiology, diagno-
sis, and treatment.

Systematic reviews, narrative reviews, meta-analysis, clinical
trials, practice guidelines, retrospective studies, and cross-

55sectional studies that were pertinent to the research objective,
were included. Case reports, correspondence, congress sum-
maries and conference abstracts were excluded. The biblio-
graphic research was conducted in the PubMed/Medline,
EMBASE and Scielo databases focusing on the Medical

60Subject Heading terms ‘female infertility’, ‘endocrine glands’,
‘prolactin’, ‘thyroid’, ‘adrenal’, ‘acromegaly’ and ‘polycystic
ovarian syndrome’ including 245 articles.

2. Physiology of fertility in women

Gonadotrophin-releasing hormone (GnRH) is produced in the
65medial preoptic area and the arcuate nucleus of the hypotha-

lamus, and is released in a pulsatile manner, stimulating the
production of follicle-stimulating hormone (FSH) and luteiniz-
ing hormone (LH) [9,10]. Kisspeptin, produced in the arcuate
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and anteroventral periventricular nuclei (a caudal extension of
70 the preoptic area), enhances the production of GnRH [10–12].

Neurokinin B stimulates kisspeptin-producing neurons, while
dynorphin inhibits them. Both are produced in the arcuate
nucleus [13].

FSH stimulates the development of ovarian follicles, whose
75 granulosa cells produce estrogens and inhibin B. These hor-

mones inhibit FSH secretion through a negative feedback
mechanism [5,14–16]. Decreased levels of FSH lead to the
atresia of adjacent tertiary follicles, while a dominant follicle
is selected due to its greater biological capacity to continue

80 growing and maintain estrogen production [5,16].
Persistent elevation of estrogens induces the sudden

release of LH, triggering ovulation. After ovulation, the domi-
nant follicle transforms into a corpus luteum that produces
estrogen and progesterone. If fertilization does not occur, the

85 corpus luteum degenerates, initiating the menstrual cycle
[5,14,16]. (Figure 1)

3. Patophysiology

The causes of infertility in women can be related to the
fallopian tubes and uterus in 68% of cases, and to ovulation

90 in 32% of cases [5,6]. The latter are mainly due to hormonal

abnormalities in the hypothalamic-pituitary-ovarian (HPO) axis
but can also be associated with dysfunction of other endo-
crine glands such as the thyroid, adrenal glands, and pan-
creas [8].

953.1. Hormonal abnormalities of the HPO axis

In 1973, the World Health Organization (WHO) developed
a classification of anovulation based on gonadotropin and
estrogen levels [17]. This classification has been used and
modified by various authors since then, without additional

100scientific discussion or consensus development. Over the
past five decades, this classification has been referenced in
various gynecology, infertility, and reproductive endocrinol-
ogy texts, often incorrectly citing a document on contracep-
tion [18]. The United Kingdom’s National Institute for Health

105and Care Excellence (NICE) guidelines on infertility research
and management, first published in 2004, also refer to this
document and describe the three groups that most authors
currently refer to. This classification stands out for its simplicity
and usefulness in clinical practice, has been widely used and

110applied to date [18–21], and divides anovulatory disorders into
three classes:

3.1.1. Class 1: Anovulation with hypogonadotrophic
hypogonadism (Figure 2a)
It is characterized by decreased secretion or pituitary resis-

115tance to GnRH, resulting in low levels of FSH and estrogens.
The main©disorders in this class are hypothalamic amenorrhea
and hyperprolactinemia [22].

3.1.1.1. Hypothalamic amenorrhea. It is caused by
a decrease in pulsatile secretion of GnRH or its complete

120inhibition, leading to reduced production of FSH and LH and
suppression of ovarian hormonal function. It affects 3–5% of

Article highlights

● Correcting underlying hormonal abnormalities enhances fertility in
most patients.

● Polycystic ovary syndrome is a common cause of anovulation.
● Hormonal evaluation is crucial within the assessment of female

infertility causes.
● Ovarian reserve should be evaluated using antimüllerian hormone

and imaging.
● Healthy lifestyles contribute to improving fertility.

Figure 1. Neuroendocrine regulation of reproductive function. AP: anterior pituitary; ArcN: arcuate nucleus; FSH: follicle-stimulating hormone; GnRH: gonadotrophin-
releasing hormone; LH: luteinizing hormone; NKB: neurokinin B; POA: preoptic area; PVAV: periventricular anteroventral nucleus; (+): stimulation; (-): inhibition.

2 M. J. CONCEPCIÓN-ZAVALETA ET AL.

Deleted Text




women of reproductive age and 25–35% of women with
secondary amenorrhea [9,23,24]. It can be caused by structural
lesions but these are rare conditions [25].

125 Functional hypothalamic amenorrhea occurs without
a structural damage, and it is a diagnosis of exclusion,
after other disorders have been ruled out [26]. It is mainly
associated with stress, excessive exercise, and caloric deficit
[25]. These factors can lead to alterations in hypothalamic

130 neuronal nuclei with decreased secretion of kisspeptin,
resulting in decreased GnRH secretion [27]. Genetic predis-
position to hypothalamic amenorrhea has been suggested,
with mutations in genes regulating GnRH and increasing
susceptibility to stress factors [28]. Rarely, it can be asso-

135 ciated with chronic disease, malabsorptive illnesses and
hypermetabolic states such as severe burns or hyperthyroid-
ism [25].

In addition to its effects on appetite regulation, body
weight, and energy balance, leptin increases the expression

140of kisspeptin in the hypothalamus, which enhances GnRH
expression and plays an important role in the regulation of
reproduction [29]. Acute and chronic caloric deprivation
decrease leptin levels, leading to hypothalamic amenorrhea
and infertility [29,30].

1453.1.1.2. Hyperprolactinemia. It is caused by increased
secretion of lactotroph cells and affects approximately 4% of
women of reproductive age and between 9% and 17% of
women with infertility [31]. Hyperprolactinemia inhibits kis-
speptin-expressing neurons in the arcuate nucleus, decreasing

150GnRH production [32], and blocks its effect in the anterior
pituitary, suppressing the production of LH and FSH, which
ultimately reduces ovarian estrogen production [33]. It mani-
fests with galactorrhea and amenorrhea [34]. Its main causes
are psychological stress, vigorous physical exercise, hypothyr-

155oidism, polycystic ovarian syndrome, liver cirrhosis, chronic

Figure 2. Pathophysiology of anovulation according to the affected level of the hypothalamic-pituitary-ovarian axis. (a) Functional hypothalamic amenorrhea and
hyperprolactinemia. (b) Polycystic ovary syndrome. (c) Primary ovarian insufficiency. ArcN: arcuate nucleus; FSH: follicle-stimulating hormone; GnRH: gonadotrophin-
releasing hormone; AMH: Anti-Müllerian hormone; LH: luteinizing hormone; PRL: Prolactin; (+): stimulation; (-): inhibition; red lines: blockage.
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kidney failure, prolactinoma, and certain drugs, such as anti-
psychotics, antidepressants, metoclopramide, estrogens,
among others. Less frequent causes include craniopharyn-
gioma, empty sella, irradiation, trauma, and infections [35].

160 Craniopharyngioma is an infrequent and benign embryonic
malformation that originates from the residual epithelial cells
of Rathke’s pouch (the tissue from which the anterior pituitary
develops) [36,37]. It has the potential to induce hypopituitar-
ism, amenorrhea, and infertility [38].

165 Empty sella refers to a radiological observation of
a flattened pituitary gland within a sellar space that is occu-
pied by cerebrospinal fluid (CSF), and it can be related to
postpartum hemorrhage, head trauma, central nervous system
stroke, hormonally active pituitary microadenoma, radiation

170 therapy, or surgical interventions. The elevated CSF pressure
in the pituitary stalk causes hyperprolactinemia in roughly
10% of patients [39]. It can cause headaches, visual distur-
bances, and hypopituitarism [40].

3.1.1.3. Other disorders. Sheehan’s syndrome typically
175 includes a history of severe postpartum bleeding, lactation

failure after childbirth, various degrees of pituitary insuffi-
ciency, inability to resume menses following delivery, and an
observed empty sella on images. This condition can result in
premature aging, osteoporosis, genital atrophy and profound

180 weakness [41].
Kallmann syndrome is a cause of congenital hypogonadism

[42], characterized by a deficiency of GnRH production, which
leads to primary amenorrhea and impaired olfaction [43].

Other less common etiologies of hypogonadotrophic hypo-
185 gonadism include tumors, infiltrative disorders, infections,

radiation exposure, trauma, specific medications, and other
endocrinopathies [44].

3.1.2. Class 2: Anovulation with normoestrogenic
normogonadotrophic status (Figure 2b)

190 It is characterized by adequate secretion of gonadotrophins
and estrogens, although FSH levels decrease during the folli-
cular phase [45]. The representative disorder of this class is
polycystic ovary syndrome (PCOS) [46]. -

3.1.2.1. Polycystic ovary syndrome. It is the most common
195 endocrinopathy and the leading cause of anovulation. It

affects 10% of women of reproductive age and 70% of
women with anovulation [46]. The frequency of GnRH pulses
is increased, which elevates LH production, subsequently lead-
ing to increased androgen production in the ovarian theca

200 cells [9,23,47]. This inhibits the maturation of ovarian follicles,
resulting in multiple small antral follicles and ovulatory dys-
function [48].

3.1.3. Class 3: anovulation with hypergonadotrophic
hypogonadism (Figure 2c)

205 Its cause is ovarian failure and occurs in approximately 5% of
women with infertility.

3.1.3.1. Primary ovarian insufficiency. This condition is tra-
ditionally defined as the total cessation of ovarian function
prior to the age of 40. However, in the majority of affected

210women, antral follicles are still present, albeit in reduced
quantities [49,50]. It affects 1% of women over 30 years of
age and 0.1% of women under 30 years of age [51]. The
pathophysiology of this condition is still not fully understood
[51,52]. However, contrary to the previously believed notion

215that the down-regulation of FSH receptors is the main pro-
blem in follicle dysfunction, it is now postulated that the more
probable mechanism involved is the inappropriate luteiniza-
tion of follicles [49,50,53]. There are mutations that cause
a loss of function in the FSH receptor, resulting in impaired

220functionality and inhibiting follicle development [54–58]. Up
to 5% of primary ovarian insufficiency cases are caused by
autoimmune oophoritis, wherein the autoimmune destruction
selectively targets the theca cells, resulting in an initial pre-
servation of granulosa cells and elevated levels of inhibin

225B. This characteristic distinguishes it from the classic forms of
primary ovarian insufficiency [59]. Biochemically, it is charac-
terized by low estrogen levels and elevated gonadotrophins
due to reduced number of ovarian follicles, resulting in ame-
norrhea and infertility [60]. Most of the cases are attributed to

230non-genetic and epigenetic causes, which may be related to
autoimmune factors, exposure to environmental toxins and
chemicals [51,61,62].

There is a growing body of evidence linking chemotherapy
and abdominopelvic and cranial radiotherapy to gonadal toxi-

235city. This can lead to primary ovarian insufficiency in up to
30% of patients treated with these agents [63,64]. There is
a limited amount of information available regarding the
impact of targeted therapy and immunotherapy on fertility
outcomes in women [64].

240Ovarian surgery may lead to the loss of the follicular pool
and result in ovarian insufficiency, especially when using the
stripping technique during cystectomy [65].

3.2. Hormonal alterations of other endocrine glands

3.2.1. Primary hypothyroidism (Figure 3a)
245In women of reproductive age, its prevalence is 2 to 4%,

primarily caused by autoimmunity [66,67]. Hypothyroidism
reduces the elimination of androstenedione and testosterone,
leading to increased peripheral aromatization toward estrone
and estradiol (E2). Additionally, it decreases the level of sex

250hormone-binding globulin (SHBG) and reduces the concentra-
tion of testosterone and E2 (although their free fractions
increase) [68]. It is also associated with hyperprolactinemia
due to increased thyrotropin-releasing hormone (TRH) secre-
tion, which decreases the production of LH, FSH, and ovarian

255estrogens, resulting in ovulatory dysfunction [69,70].

3.2.2. Hyperthyroidism (Figure 3b)
Its prevalence in women of reproductive age is approximately
1%, with the primary cause being Graves’ disease due to the
presence of antibodies against the TSH receptor [71]. It has

260been reported that 5.8% of patients with hyperthyroidism
have primary infertility [72]. Thyrotoxicosis reduces the elim-
ination of E2 and increases its formation from testosterone,
thereby increasing the total concentration of E2 while decreas-
ing its free fraction. Additionally, it increases the level of SHBG

4 M. J. CONCEPCIÓN-ZAVALETA ET AL.



265 [73,74]. All these factors contribute to anovulation and disrup-
tion of menstrual cycles [14].

3.2.3. Congenital adrenal hyperplasia (Figure 3c)
It is a group of autosomal recessive genetic disorders that
affect the steroidogenesis of the adrenal cortex. The most

270 common form is due to 21α-hydroxylase deficiency, which
reduces cortisol and aldosterone levels and increases adreno-
corticotropic hormone (ACTH) production [75]. Excess ACTH
and the subsequent adrenal overproduction of androgenic
hormones lead to hyperandrogenism [76], which is associated

275 with early puberty, acne, hirsutism, menstrual disturbances,
and infertility [77]. It is believed that hyperandrogenism has
a direct effect on pulsatile GnRH secretion, increasing LH and
progesterone production [78]. The increase in adrenal-derived
progesterone disrupts menstrual cyclicity and cervical mucus

280 [77]. Furthermore, the accumulation of 17-
hydroxyprogesterone is associated with alterations in endo-
metrial maturation and possibly implantation [79]. The classic,
more severe form is associated with a greater degree of
ovarian dysfunction and infertility [80]. It can be associated

285 with PCOS [14]. The non-classical form is more common,
occurring in 1 in 1000 live births, and is associated with
hyperandrogenism but does not cause the classic virilization
of the external genitalia in girls at birth. It may even be
asymptomatic and diagnosed in adulthood during infertility

290 evaluation [81].

3.2.4. Addison’s disease (Figure 3d)
Primary adrenal insufficiency results in deficiency of cortisol,
aldosterone, and adrenal androgen precursors such as dehy-
droepiandrosterone (DHEA) and DHEA sulfate (DHEA-S) [82]. In

29510–20% of cases, it is associated with primary ovarian insuffi-
ciency, leading to infertility [83]. Additionally, it is an important
component of autoimmune polyendocrine syndromes type 1
and type 2. The prevalence of infertility can reach 50–70% in
women with autoimmune polyendocrine syndrome type 1

300[84]. Anti-steroid cell antibodies predict the risk of primary
ovarian insufficiency in patients with Addison’s disease, with
antibodies against the side-chain cleavage enzyme showing
the highest accuracy and positive association with 21α-
hydroxylase antibodies [85,86].

3053.2.5. Cushing’s syndrome (Figure 3e)
Hypercortisolism inhibits the release of GnRH and suppresses
the production of LH and FSH, causing anovulation and infer-
tility. It appears that hypercortisolism decreases the expression
of kisspeptin, although the exact pathophysiology is not fully

310understood [87]. Less than 200 pregnancies have been
reported in women with Cushing’s syndrome [88].

3.2.6. Acromegaly (Figure 3f)
It is caused by excessive production of growth hormone (GH)
from a somatotroph adenoma in the pituitary gland, resulting

315in excessive secretion of insulin-like growth factor 1 (IGF-1)
[89]. A retrospective study found that all women with acro-
megaly were infertile, but after disease control, 73.3% of them
achieved at least one conception [90]. Acromegaly is asso-
ciated with hyperprolactinemia in one-third of cases, and in

320addition to the effects of prolactin (PRL), it can cause compres-
sion of gonadotrophin cells and the pituitary stalk, leading to
reduced production of GnRH, LH, and FSH, resulting in dys-
function of the HPO axis and ultimately anovulation [91,92].

Figure 3. Pathophysiology of infertility in women caused by other endocrine disorders. (a) Primary hypothyroidism. (b) Hyperthyroidism. (c) Congenital adrenal
hyperplasia. (d) Addison’s disease. (e) Cushing’s syndrome. (f) Acromegaly. (g) Obesity. ACTH: adrenocorticotropic hormone; DHEA: Dehydroepiandrosterone; FSH:
follicle-stimulating hormone; GnRH: gonadotrophin-releasing hormone; AMH: Anti-Müllerian hormone; LH: luteinizing hormone; PRL: Prolactin; SHBG: sex hormone-
binding globulin; TPOAb: thyroid peroxidase antibodies; TRH: thyrotropin-releasing hormone.* both primary hypothyroidism and Addison’s disease can be
associated with primary ovarian insufficiency.
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Moreover, the excess of GH and IGF-1 could directly inhibit the
325 action of GnRH and ovarian function [93].

3.2.7. Obesity (Figure 3g)
Obesity is associated with menstrual irregularity and anovula-
tion, similar to the PCOS [94]. Insulin resistance, present in
over 70% of women with obesity and PCOS, is the underlying

330 pathophysiological alteration linking both conditions [95].
Obesity increases insulin levels, stimulating its receptors in
GnRH-producing neurons and accelerating its pulsatile secre-
tion [23]. Moreover, hyperinsulinemia enhances ovarian andro-
gen production [96], which aromatizes to estrogens

335 peripherally due to increased adipose tissue, negatively feed-
back on the HPO axis, reducing gonadotrophin production,
and disrupting ovulation [97]. Hyperlipidemia also contributes
to decreased gonadotrophin secretion [98].

Leptin, which is elevated in obesity, has been found to
340 have cerebral resistance to its effects [99], and negatively

impacts the reproductive axis, leading to decreased levels of
estrogen and progesterone, as well as ovulation distur-
bances [100].

4. Diagnosis

345 The diagnosis of infertility in women should be a systematic
process that begins with a thorough medical history and
physical examination in order to guide the hormonal and
imaging tests that should be performed [5].

4.1. Medical history and physical examination

350Firstly, infertility should be confirmed by inquiring about the
duration of the patient’s attempts to conceive. The patient’s
age is an important prognostic factor [101]. It is important to
obtain information about the age of menarche, menstrual
patterns, sexual history, previous pregnancies, duration of

355infertility, and previous treatments, as well as the use of
medications that may affect the HHO axis, including hormonal
contraceptives [5]. Anovulation is suspected when menstrual
cycles are persistently irregular, i.e. less than 21 days or more
than 35 days in duration, presence of abnormal uterine bleed-

360ing, a history of amenorrhea, or fewer than 8 menstrual cycles
per year [5,14,102,103]. Lifestyle factors, dietary habits, stress,
physical activity, smoking, alcohol consumption, and use of
addictive substances should also be investigated [104].
Occupation and exposure to endocrine disruptors such as

365pesticides, fertilizers, industrial products, and heavy metals
can affect hormonal axes [105]. General symptoms such as
weight changes, mood alterations, fatigue, gastrointestinal
symptoms, palpitations, sweating, tremors, cold or heat intol-
erance, galactorrhea, and other symptoms based on clinical

370suspicion should be inquired about [5].
The physical examination should include anthropometric

measurements (weight, height, abdominal circumference,
and waist-to-hip ratio), assessment of vital functions, Tanner
staging inspection, evaluation of breast secretion, palpation of

375the thyroid gland, search for phenotypic features of Turner
syndrome, search of signs of insulin resistance such as
acanthosis nigricans and acrochordons, signs of

Figure 4. Hormonal assessment of infertility in women. ACTH: adrenocorticotropic hormone; AFC: antral follicle count; DHEA: Dehydroepiandrosterone; DHEA-S:
dehydroepiandrosterone sulfate; E2: Estradiol; FSH: follicle-stimulating hormone; GH: growth hormone; GnRH: gonadotrophin-releasing hormone; AMH: Anti-
Müllerian hormone; IGF-1: insulin-like growth factor 1; LNSC: late-night salivary cortisol; UFC: urinary free cortisol; LDDST: low-dose dexamethasone suppression
test; LH: luteinizing hormone; PG: Progesterone; PRL: Prolactin; MRI: magnetic resonance imaging; FT4: free thyroxine; CT: computed tomography; TPOAb: Anti-
thyroid peroxidase antibodies; TSH: thyroid-stimulating hormone; TSH-R-Ab: Anti-TSH-receptor antibodies. * one-third of women with regular menstrual cycles
experience anovulation.
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hyperandrogenism such as acne, and hirsutism, and signs of
Cushing syndrome such as purple-colored violaceous striae

380 greater than 1 cm, easy bruising and dorsocervical fat pad
[5,14,102].

glicemia

4.2. Hormonal studies (Figure 4)

4.2.1. Evaluation of ovulation
385 The biochemical evaluation of infertility should include mea-

surement of hormones of the HHO axis, such as gonadotro-
phins and estrogen levels, to establish the differential
diagnosis between hypogonadotrophic and hypergonado-
trophic causes and normoestrogenic causes. The traditional

390 classification of the WHO, which has been applied up to the
present, has demonstrated usefulness; however, there have

been significant advancements in understanding ovulation
control, the pathophysiology of ovulatory disorders, and
improvements in technology and genomics. For this reason,

395 the International Federation of Gynecology and Obstetrics
(FIGO) has proposed a new classification that groups the
causes of ovulatory disorders anatomically, based on HHO
axis levels, recognizing PCOS as a separate entity as it does
not reside in a single anatomical location [19]. (Table 1)

400 Generally, women with regular menstrual cycles are likely
to have normal ovulation. However, up to one-third of them
may experience anovulation [106], which can be confirmed by
measuring progesterone levels on day 21–22 of the cycle

(luteal phase). This retrospective evaluation allows determin-
405ing if ovulation has occurred. A progesterone level above 10

ng/mL is considered indicative of adequate ovulation [107],
while levels below 3 ng/mL indicate anovulation [106].
Progesterone levels between 3 and 10 ng/mL may be asso-
ciated with luteal insufficiency or ovulation occurring on a -

410different day than expected [16].
It is important to recognize that transvaginal ultrasonogra-

phy is the standard reference examination for detecting ovu-
lation. In this context, the time of ovulation can be determined
as the point between the maximum follicular diameter and

415follicular collapse [16]. Furthermore, it is useful in detecting
a wide variety of uterine and adnexal pathologies [108].

Regarding hyperprolactinemia, it has been observed that
a mild elevation of PRL levels between 30–50 ng/mL may be
associated with a shortened luteal phase and infertility. On the

420other hand, a moderate elevation between 51 and 75 ng/mL is
related to oligomenorrhea, and levels above 100 ng/mL are
associated with galactorrhea, hypogonadism, and amenorrhea
[109]. Chronic kidney and liver diseases can cause mild to
moderate hyperprolactinemia [110]. Patients with PCOS may

425also present moderate elevations in PRL [111].
In the evaluation of PCOS, other endocrine pathologies

such as hypothyroidism and non-classical congenital adrenal
hyperplasia should be ruled out [112]. The diagnosis is estab-
lished, according to consensus, by the presence of at least 2

430out of the following 3 Rotterdam criteria: oligomenorrhea,
hyperandrogenism (either clinical or biochemical), and

Table 1. Comparison between the traditional classification of anovulation by the WHO and the FIGO. FIGO: International Federation of Gynecology and Obstetrics;
PCOS: polycystic ovary syndrome; WHO: World Health Organization.

WHO FIGO

Authors WHO Scientific Group on Agents Stimulating Gonadal Function in the Human FIGO Ovulatory Disorders
Steering Committee

Year of creation 1973 [17] 2022 [19]
Basis of the
classification

Levels of gonadotrophins and estrogens. Anatomical location of the
condition.

Groups Group I: Low endogenous estrogen activity and decreased gonadotrophins.
Group II: ‘Distinct’ estrogen activity (urinary estrogens < 10 mcg/24 h), with normal gonadotrophins.
Group III: Primary ovarian failure (primary ovarian insufficiency), associated with low endogenous estrogen
activity and pathologically elevated gonadotrophins.

Acronym ‘HyPO-P’
Type I: Hypothalamic
Type II: Pituitary
Type III: Ovarian
Type IV: PCOS

Subgroups No further subclassification. Acronym ‘GAIN-FIT-PIE’
Type I:

● Genetic
● Autoimmune
● Iatrogenic
● Neoplasm

Type II:

● Functional
● Infectious or Inflammatory
● Trauma & Vascular

Type III:

● Physiological
● Idiopathic
● Endocrine

Type IV: No subclassification

EXPERT REVIEW OF ENDOCRINOLOGY & METABOLISM 7



polycystic ovary morphology on ultrasound [113]. In cases of
anovulation and biochemical hyperandrogenism, ovarian
ultrasonography may not be indispensable; however, it may

435 be useful to assess other pathologies [108]. Polycystic ovarian
morphology is characterized by the presence of more than 20
follicles per ovary measuring 2–9mm each, and/or an ovarian
volume of 10mL or greater, as detected using a transducer
with a frequency equal to or greater than 8MHz. In the case of

440 older equipment, it suffices to observe an ovarian volume of
10mL or greater. Within the initial 8 years following menarche,
there can be a heightened prevalence of polycystic ovaries,
thus ultrasound is not recommended for diagnostic purposes
of PCOS [114]. On the other hand, the clinical diagnosis of

445 hyperandrogenism focuses on evaluating hirsutism using the
modified Ferriman-Gallwey scale, and biochemical diagnosis is
reserved when there are doubts in the clinical diagnosis by
measuring free and total testosterone, DHEA, and DHEA-S
[112]. Additionally, the evaluation of insulin resistance is per-

450 formed by performing an oral glucose tolerance test, measur-
ing basal insulin, and determining the homeostatic model
assessment of insulin resistance (HOMA-IR) index [115,116].

Thyroid function evaluation is also important, by measuring
thyroid-stimulating hormone (TSH) and, if necessary, free thyr-

455 oxine. Subclinical hypothyroidism, with a TSH level > 4 mIU/L,
is associated with a higher frequency of infertility [117]. The
American Thyroid Association (ATA) recommends measuring
TSH in women with infertility [118]. In some cases, it may be
useful to perform tests to detect the presence of antithyroid

460 peroxidase antibodies (TPOAb), antithyroglobulin antibodies,
and antibodies against the TSH receptor, based on clinical
suspicion, although the evidence is limited. Thyroid antibodies
have been found in ovarian follicles, which has been asso-
ciated with impaired development [119]

465 4.2.2. Evaluation of ovarian response
Ovarian reserve is defined as the number of primordial follicles
present in the ovaries at any given point in life [120], serving as
an indicator of reproductive age [121]. However, there are cur-
rently no direct tests available in routine practice to accurately

470 assess the true ovarian reserve [122]. On the other hand, ovarian
response refers to the endocrine and follicular reaction of the
ovaries in response to a stimulus [121]. This can be assessed
through hormonal assay methods or imaging studies.

4.2.2.1. Anti-Müllerian Hormone (AMH). Previously, tests
475 such as FSH and estradiol measurements, clomiphene citrate

stimulation test, and inhibin B measurement were performed.
However, currently, the focus is on measuring AMH, which has
emerged as the standard for evaluating ovarian response,
rendering the previously described tests obsolete [123–126].

480 AMH is produced by the granulosa cells of early follicles
[46], and its role in assessing ovarian response has been
known for about 20 years [7,127]. Its function is to inhibit the
recruitment of primordial follicles from the resting oocyte pool
and the recruitment of small antral follicles by decreasing their

485 sensitivity to FSH [128–130], thereby preventing premature
follicle depletion [130].

AMH expression begins when primordial follicles are recruited
to grow, reaches its peak in preantral and small antral follicles

measuring 2–4mm [131], continues until they reach approxi-
490mately 8mm in diameter, and is absent in larger antral follicles,

which grow under the influence of FSH [124,128,132]. It is also
not produced in corpus luteum or atretic follicles [133].

The level of AMH reflects the size of the follicle pool
and is the preferred hormonal marker for evaluating ovar-

495ian response [127]. As described earlier, AMH levels
decrease with age [132,133], starting at approximately
35 years old and accelerating after 40 years old
[127,134,135].

Unlike other hormonal markers, its secretion is indepen-
500dent of GnRH, and it can be measured at any time during

the menstrual cycle [123,135,136]. The normal range varies
between 1.0 and 3.5 ng/mL [137]. An AMH value below
0.7 ng/mL is associated with a significant reduction in
fertility [138].

505Since women with PCOS have a higher number of
preantral and small antral follicles, AMH levels increase 2
to 3 times [46]. AMH level is related to the severity of
PCOS and infertility [139]. Furthermore, by suppressing
FSH action, it contributes to ovulatory disorders [128]. An

510AMH value above 3.8–5 ng/mL is a useful diagnostic tool
for PCOS [140], potentially replacing the criterion of poly-
cystic morphology when transvaginal ultrasound is not
feasible [141].

However, young women with low AMH did not exhibit
515reduced fecundability, whereas those with high AMH

showed reduced fecundability even after accounting for
covariates [142]. Besides, AMH is a weak independent
predictor of live birth following ART, specifically in the
context of both fresh and frozen embryo transfer, be it

520single or multiple transfers [143].
Diminished ovarian reserve (DOR) can be defined as the

decrease in the number and quality of oocytes, diminished
AMH levels, and elevated FSH levels. It is commonly asso-
ciated with advanced age (over 35 years old). Despite

525using assisted reproductive techniques, DOR leads to
reduced fertility and unfavorable fertility outcomes [144].

4.2.2.2. Imaging studies. Ovarian response can also be
assessed through imaging studies. During the early follicular
phase, antral follicles can be observed, which have a diameter

530of 2 to 10mm and can be recruited for use in assisted repro-
duction techniques (ART). During menstruation, ovarian folli-
cles measure 4 to 9mm, and before ovulation, the dominant
follicle reaches a diameter of 20 to 25mm, indicating that
ovulation has occurred [127,145,146]. The antral follicle count

535(AFC) in a woman with normal ovulation during reproductive
years ranges from 10 to 20 [147]. An AFC below 5–7 is asso-
ciated with a reduced pregnancy rate, while an AFC equal to
or greater than 20 is associated with a higher risk of ovarian
hyperstimulation syndrome (OHSS) [122]. Similar to AMH, the

540number of antral follicles decreases with age, approximately
4.8% per year before 37 years old and 11.7% per year after 37
years old [148].

The use of ART has demonstrated that the AFC through
transvaginal ultrasound is one of the best predictors of a good

545response during controlled ovarian hyperstimulation
[127,146,149].
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5. Treatment (Figure 5)

5.1. Non-pharmacological interventions

Numerous studies have demonstrated the relevance of life-
550 style factors in infertility in women.

5.1.1. Mediterranean diet
The Western dietary pattern has a negative impact on fertility,
while the Mediterranean diet has a positive impact [150–158].
Among these, the study by Karayiannis revealed that women

555 following a Mediterranean diet had a higher pregnancy rate
(50% vs 29.1%, p = 0.01) and a higher number of live births
(48.8% vs 26.6%, p = 0.01) compared to those who did not
follow it [159]. Specifically, whole grains and dietary fiber have
been shown to improve implantation rates, clinical pregnan-

560 cies, and live births [160–162].

5.1.2. Omega-3 and omega-6 fatty acids
The benefits on fertility are controversial. The discrepancies
are due to the heterogeneity of the studies [160,163–167].

5.1.3. Coffee
565 High caffeine consumption has been associated with

increased time to achieve pregnancy, as well as an
increased incidence of miscarriage, low birth weight, and
intrauterine growth retardation, in a dose-dependent rela-
tionship [168]. However, a systematic review found no

570 association between caffeine consumption and natural
fertility, nor in the outcomes of assisted reproductive
treatments [169].

5.1.4. Alcohol consumption
A clear relationship between alcohol consumption and

575natural fertility has not been established; however,
a negative effect on assisted reproduction has been
observed [170]

5.1.5. Tobacco
It can increase the thickness of the zona pellucida, hindering

580sperm penetration, and advance menopause by up to 4 years
[170] Additionally, it may increase oxidative stress. Smoking
cessation could improve fertility in female smokers [171]

5.1.6. Drug abuse
Opioids cause amenorrhea and decrease E2 and LH levels

585[172]. Marijuana is associated with menstrual disturbances,
reduction in the number of oocytes, and an increased risk
of preterm birth. A specific period of drug abstinence for
fertility restoration has not been established [173,174].

5.1.7. Exercise
590Vigorous exercise of 30 to 60 minutes daily decreases the

risk of anovulatory infertility. However, very strenuous
exercises exceeding 60 minutes daily increase the risk of
anovulation. Additionally, in women with PCOS and obe-
sity or overweight, exercise accompanied or not by diet

595can restore ovulation [175]. Possible mechanisms include
the regulation of the HPO axis and the reduction of insulin
and free androgen levels [176].

Figure 5. Medical treatment of infertility in women. IVF: in vitro fertilization; GnRH: gonadotrophin-releasing hormone. * IVF or select cases of IUI.
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5.2. Pharmacological treatment

Pharmacological treatment of infertility in women includes
600 managing associated endocrine disorders, ovulation induction,

and ovarian stimulation [177–179]. Ovulation induction
ensures the release of at least one egg, which can be used
for natural fertilization or intrauterine insemination (IUI) [180].
Ovarian stimulation produces multiple eggs to select the high-

605 est-quality one for use in in vitro fertilization (IVF), although in
selected cases, it could also be combined with IUI [180]. The
recommended drugs for ovulatory disorders are grouped
according to the traditional classification of the WHO
described in the diagnostic section [18].

610 5.2.1. Group I: hypogonadotrophic hypogonadism
Correction of energy imbalance is imperative to enhance the
functioning of the HPO axis in women with functional
hypothalamic amenorrhea. This can be attained by diminish-
ing the intensity of exercise and augmenting caloric intake.

615 The precise extent of weight gain requisite for this purpose
remains unclear; however, it is advisable to target a weight
equal to that at which menstruation ceased. Relying solely on
oral contraceptives for reestablishing menstrual cycles proves
insufficient as it does not adequately address lingering bone

620 complications. For adult women desiring conception, initial
treatment involving pulsatile GnRH is recommended, fol-
lowed by gonadotropin therapy and induction of ovulation
in cases where GnRH is not viable. Ovulation induction is
advised exclusively for individuals with a BMI of 18.5 kg/m2

625 or higher and after endeavors to reinstate energy equili-
brium [26].

5.2.2. Pulsatile GnRH
Its administration restores the physiological stimulation of FSH
and LH to induce follicular maturation and ovulation. The

630 frequency of pulses is adjusted to mimic the physiological
variation in GnRH pulse variability [181]. It is recommended
as a first-line treatment for inducing ovulation in this group
[26]. Pulsatile GnRH administration can induce ovulation in
over 90% of cycles, with pregnancy rates ranging from 18 to

635 32% per cycle [182]. It is generally well-tolerated and presents
a lower risk of OHSS or multiple pregnancies compared to
exogenous gonadotrophin treatment [183,184].

5.2.2.1. Gonadotrophin Therapy. The use of injectable
gonadotrophin preparations is an alternative method to

640 induce folliculogenesis when pulsatile GnRH administration is
ineffective [9]. In women with hypogonadotrophic hypogo-
nadism and intrinsic ovulatory dysfunction, the use of exogen-
ous ovulatory inducers is required [182,183]. This therapy
presents a cumulative live birth rate of 33% over 4 cycles

645 when combined with IUI [185]. In the case of IVF with auto-
logous oocytes, the live birth rate can exceed 65% per cycle
[185].

5.2.2.2. Dopaminergic Agonists. In women, normal PRL
levels range from 15 to 25 ng/mL [186]. Normalization of PRL

650 levels is recommended before attempting conception [187].
Dopaminergic agonists are the first-line treatment for

ovulatory disorders secondary to hyperprolactinemia [188], as
they are effective in resolving amenorrhea and achieving
pregnancy [189,190] in over 85% of cases after correcting

655hyperprolactinemia [191]. Cabergoline is recommended over
bromocriptine due to its better tolerance and effectiveness in
restoring fertility in women, according to comparative studies
[192]. For women using antipsychotics associated with hyper-
prolactinemia, it is recommended to contemplate dose reduc-

660tion and, if possible, shifting to alternative medications while
carefully assessing the risk/benefit for both the patient and her
offspring [33,193]

5.2.3. Group II: normoestrogenic normogonadotrophic
state

6655.2.3.1. Letrozole. It is an aromatase inhibitor that blocks
the conversion of testosterone to E2, reduces the concentra-
tion of the latter, decreases negative feedback in the
hypothalamus, and stimulates gonadotrophin production
[194]. It has been shown to be superior to clomiphene citrate

670in terms of live birth rates [194–196]. A Cochrane systematic
review comparing letrozole versus clomiphene citrate
reached a similar conclusion [197]. The international evi-
dence-based guideline for the assessment and management
of polycystic ovary syndrome also recommend letrozole as

675the first option treatment [112]. However, currently, the use
of letrozole for ovulation induction is not approved by the US
Food and Drug Administration or the European Medicines
Agency [198].

5.2.3.2. Clomiphene citrate. It is a selective modulator of
680the E2 receptor that blocks the negative feedback exerted by

circulating estradiol, increasing the frequency of GnRH pulses,
FSH secretion, and promoting folliculogenesis [199]. The rates
of ovulation and pregnancy with its use are 73% and 36% per
cycle, respectively [199,200]. Clomiphene citrate remains

685recommended as first-line treatment for anovulatory PCOS
by multiple consensuses and guidelines [45,200].

5.2.3.3. Metformin. It is used to decrease insulin resistance
and hyperinsulinemia in PCOS [201]. On its own, it can induce
ovulation with an odds ratio (OR) of 3.88 (95% CI: 2.25 to 6.69)

690[202]. When combined with clomiphene citrate, ovulation
rates improve compared to monotherapy with clomiphene
citrate, with an OR of 4.41 (95% CI: 2.37 to 8.22) [202].

5.2.4. Group III: hypergonadotrophic hypergonadism
In women with primary ovarian insufficiency, to date, oocyte

695donation is an option for treating infertility [203]. Treatment
remains challenging and generally involves hormonal replace-
ment therapy and IVF [204]. However, considering that follicle
luteinization could be the primary factor contributing to folli-
cle dysfunction, it is suggested that reducing LH levels could

700lead to improvements in ovulation and conception rates [49].
The physiological hormone replacement therapy was studied
by the National Institutes of Health in 2010, focusing on
women with overt primary ovarian insufficiency [49].
Suppressed LH levels prevent follicle luteinization, restored

705follicle function, promoted ovulation, and increased the
chances of achieving pregnancy in approximately one-half of
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these women [50,205]. Besides, it improved their bone health
[206]. Physiological estradiol replacement treatment is cur-
rently recommended as the treatment for women with overt

710 primary ovarian insufficiency should be maintained until
reaching the average age of natural menopause [207].

In women who underwent chemotherapy or radiotherapy,
fertility preservation is recommended, including cryopreserva-
tion of oocytes, embryos, and ovarian tissue. The use of gona-

715 dotropin-releasing hormone agonists (GnRHa) during
chemotherapy has shown to reduce chemotherapy-induced
ovarian insufficiency. Additionally, prior to pelvic radiotherapy,
surgical ovarian transposition can be performed as an attempt
to prevent primary ovarian failure [63].

720 Women with premature ovarian insufficiency perceive that
the evaluation of their medical condition is aggressive [208],
and they experience a lack of social support, leading to lower
self-esteem [209]. Moreover, considering the emotional impact
of this diagnosis and its implications, it is essential to provide

725 them with improved information about their condition, alle-
viate feelings of stigmatization related to the disorder, and
support them in formulating alternative goals concerning
family planning and other aspirations [210].

5.3. Management of other endocrine disorders

730 5.3.1. Thyroid disorders
ATA recommends that women with subclinical hypothyroid-
ism undergoing IVF should receive levothyroxine treatment to
maintain TSH below 2.5 mIU/L [118]. On the other hand, the
American Society for Reproductive Medicine recommends

735 considering the use of levothyroxine in women with subferti-
lity if TSH exceeds the upper limit of normal (4–4.5 mIU/L). If
the TSH value is between 2.5 and 4 mIU/L, the presence of
thyroid antibodies should be evaluated, and if present, initiat-
ing levothyroxine treatment at an initial dose of 25–50 μg/day

740 is also recommended [211].
In euthyroid women, despite the association between thyr-

oid antibodies, infertility [212] and low ovarian response [213],
to date, there is no evidence to justify the systematic use of
levothyroxine or corticosteroids [214].

745 In cases of thyroid autoimmunity, the European Thyroid
Association recommends using the intracytoplasmic sperm
injection (ICSI) technique instead of IVF as TPOAb in the
follicular fluid could bind to the zona pellucida, and this can
be avoided by using the ICSI method. Additionally, it recom-

750 mends evaluating TSH levels after ovarian stimulation (in case
of pregnancy, on the day of the second confirmatory human
chorionic gonadotrophin [hCG] administration) [215].

5.3.2. Adrenal insufficiency
Continuous evaluation and endocrine counseling are recom-

755 mended before conception, as well as guidance on steroid
dose regulation during pregnancy and childbirth [216].

5.3.3. Congenital adrenal hyperplasia
It is suggested to maintain progesterone levels below 2 nmol/
L during the follicular phase, although achieving this value

760 may require the administration of supraphysiological steroid
doses [217]. Administration of hydrocortisone has been

observed to regulate menstrual cycles, reduce androgen and
progesterone levels, and decrease time to achieve concep-
tion [218].

7655.3.4. Obesity
NHANES study found that the relationship between body mass
index (BMI) and fertility has a turning point at a value of 19.5
kg/m2, representing the point of highest fertility. In women
with a BMI below 19.5 kg/m2, each unit reduction below 19.5

770kg/m2 increases the risk of infertility by 33%, and each unit
increase above 19.5 kg/m2 increases it by 3%. It is suggested
to maintain a body mass index close to 19.5 kg/m2 [219].

Significant clinical benefits can be achieved in women with
overweight and obesity even with moderate weight loss (5–

77510% of initial body weight) and lifestyle changes [220]. There
are limited studies comparing the effects of anti-obesity med-
ications on fertility in women [221]. These drugs are not safe
for use during pregnancy, so contraceptive methods should
be used during treatment and discontinued in case of preg-

780nancy [222].
Bariatric surgery significantly improves the conception rate

in nulliparous women with obesity, even within a time frame
of less than 18months after the operation. However,
a reduction in AMH levels has been observed, indicating

785potential impairment of ovarian function, regardless of the
type of procedure performed. Regarding outcomes in ART,
improvements have been observed after surgery, such as
a decrease in the required gonadotrophin units, an increase
in the number of follicles, improvement in embryo quality, and

790higher pregnancy rates [223,224].

5.4. Other pharmacological treatments

5.4.1. Folic acid
There is evidence that high doses of folic acid improve fertility
outcomes [225–227]. Regarding the effect of folic acid on

795ovarian response, supplementation with 400–800 μg/day of
folic acid has been observed to have a positive impact on
AFC [228]. In women undergoing ART, supplementation with
doses higher than 800 μg/day of folic acid improves implanta-
tion rate and clinical pregnancies [227].

8005.4.2. Vitamin D
The results of studies investigating the association between
serum vitamin D levels and markers of ovarian response in
human female populations are heterogeneous [229–233].
However, a study conducted by Naderi evaluated the effect

805of weekly administration of 50,000 IU of 25-hydroxy vitamin
D on AMH levels in 30 women with infertility and low levels of
25-hydroxy vitamin D and AMH, and found a significant cor-
relation between serum levels of 25-hydroxy vitamin D and
AMH after three months [234]. Patients with low vitamin

810D concentrations should receive supplementation with doses
of 1500–2000 IU/day [168,235].

5.4.3. Antioxidants
Studies have not demonstrated a positive impact on fertility
[225,236]. A systematic review by Cochrane examined the use

815of antioxidants such as N-acetylcysteine, melatonin, arginine,
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inositol, carnitine, selenium, vitamin E, vitamin C, and calcium,
but found no positive effects on fertility in women due to the
low quality of evidence and high heterogeneity among stu-
dies [237].

820 5.4.4. Probiotics
Based on current evidence, there is insufficient data to support
their use in improving fertility in women [238].

5.5. Assisted reproductive technologies

In patients with unexplained infertility, IUI in combination
825 with ovarian stimulation is recommended [239]. This stimu-

lation can be performed using clomiphene citrate, aroma-
tase inhibitors, gonadotrophins, or a combination of these
medications at doses similar to those used for ovulation
induction [239,240].

830 IVF is an effective tool for achieving conception [205]
and should be considered in couples with unexplained
infertility who have been unable to conceive after 2 years
[185], cases of untreated bilateral tubal factor infertility,
severe male factor infertility, or when preimplantation

835 genetic testing will be used. In women over 38 to 40 years
old, immediate IVF may be considered [241]. A typical IVF
cycle involves stimulation with gonadotrophins to stimulate
folliculogenesis, followed by aspiration of multiple ovarian
follicles. In current IVF protocols, oocyte maturation is trig-

840 gered using hCG or gonadotrophin-releasing hormone ago-
nists (GnRHa) [242]. It is noteworthy that despite
appropriate correction, the presence of the endocrine dis-
order could still have a detrimental impact on the preg-
nancy rate during IVF treatment [243].

845 OHSS is a potentially severe and life-threatening iatro-
genic complication, characterized by ovarian enlargement,
third-space extravasation, and multiorgan failure. The use
of hCG as a drug (included in over 75% of IVF cycles) [244]
is the main cause of OHSS due to its long half-life, high

850 LH receptor activity, and prolonged duration of intracellu-
lar effects. Therefore, special care must be taken in popu-
lations at high risk of OHSS, such as women with PCOS
[245]. As for GnRHa, used as single agents or in combina-
tion with hCG in dual trigger protocols, they provide

855 greater safety in terms of OHSS risk, as they generate
a short-duration LH secretion [242,244,245].

6. Expert opinion

Infertility in women is an area under constant investiga-
tion within the field of reproductive medicine. It affects

860 millions of women globally and involves various intercon-
nected factors, including endocrine disorders.
Understanding the complex endocrine causes is crucial.
The most frequent endocrine diseases associated with
infertility are obesity, polycystic ovary syndrome, type 2

865 diabetes and thyroid disorders, however they are not the
only ones, so it is important to carefully evaluate the root
causes, since in this way healthcare professionals can

create personalized treatments that target the core pro-
blem, increasing the chances of successful pregnancies.

870In our manuscript, we thoroughly explore the endo-
crine disorders that negatively impact fertility in women.
We have developed diagnostic and therapeutic algorithms
to help healthcare professionals systematically address
endocrine-related infertility in women. These detailed

875algorithms guide accurate diagnosis and effective treat-
ment decisions, empowering clinicians and researchers in
their respective fields, whether endocrinologists or gyne-
cologists, and promoting standardized approaches to
patient management.

880Despite the progress made in our review, certain
knowledge gaps remain in the pathophysiology of many
endocrine disorders contributing to infertility in women.
Currently, the scientific community is actively involved in
numerous studies, working diligently to bridge the com-

885plex knowledge gaps and deepen our understanding of
the elusive biological and genetic mechanisms that con-
tribute to infertility in women. Researchers aim to identify
innovative therapeutic targets that could transform infer-
tility treatments, providing personalized interventions tai-

890lored to the specific needs of each patient.
Furthermore, there is a concerted effort to identify

reliable biomarkers that can predict treatment response
and the potential success of assisted reproductive proce-
dures. The discovery of such predictive indicators repre-

895sents a significant advancement, enabling clinicians to
make well-informed decisions, optimize treatment options,
and improve overall patient outcomes.

A promising horizon awaits, offering a more refined
diagnostic and therapeutic approach to address endo-

900crine-related infertility. Persistent research endeavors will
equip clinicians with finely tuned diagnostic tools,
enabling precise identification of the underlying causes
of infertility. These advances will be complemented by
cutting-edge therapeutic interventions, designed to

905address each patient’s unique challenges and enhance
the effectiveness of treatment strategies. The cumulative
result will lead to improved fertility outcomes.

Furthermore, significant advancements are expected in
the treatment of infertility in women. Innovations in ovu-

910lation-inducing medications are poised to surpass existing
pharmaceutical options, potentially leading to higher rates
of implantation success. This promising shift will particu-
larly benefit women facing infertility due to anovulation.

In addition, gene and cellular therapies are on the cusp of
915revolutionizing the landscape of infertility treatment in

women. By harnessing the power of genetic manipulations
and cellular reprogramming, scientists aim to address inferti-
lity at the molecular level, opening up new possibilities for
intervention. Concurrently, developments in fertility preserva-

920tion techniques will safeguard the aspirations of parenthood.
The pursuit of excellence in assisted reproductive tech-

niques will persist, fueled by groundbreaking innovations
promising superior outcomes. This transformative progress
aims to reduce the risk of complications, relegating the
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925 specter of ovarian hyperstimulation syndrome to the past.
As these novel techniques mature, they will pave the way
for patient-centric care.
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