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Abstract
Background Obesity is a multifactorial chronic disease with a high, increasing worldwide prevalence. Genetic causes account 
for 7% of the cases in children with extreme obesity.
Data sources This narrative review was conducted by searching for papers published in the PubMed/MEDLINE, Embase and 
SciELO databases and included 161 articles. The search used the following search terms: “obesity”, “obesity and genetics”, 
“leptin”, “Prader-Willi syndrome”, and “melanocortins”. The types of studies included were systematic reviews, clinical 
trials, prospective cohort studies, cross-sectional and prospective studies, narrative reviews, and case reports.
Results The leptin-melanocortin pathway is primarily responsible for the regulation of appetite and body weight. However, 
several important aspects of the pathophysiology of obesity remain unknown. Genetic causes of obesity can be grouped 
into syndromic, monogenic, and polygenic causes and should be assessed in children with extreme obesity before the age 
of 5 years, hyperphagia, or a family history of extreme obesity. A microarray study, an analysis of the melanocortin type 4 
receptor gene mutations and leptin levels should be performed for this purpose. There are three therapeutic levels: lifestyle 
modifications, pharmacological treatment, and bariatric surgery.
Conclusions Genetic study technologies are in constant development; however, we are still far from having a personalized 
approach to genetic causes of obesity. A significant proportion of the affected individuals are associated with genetic causes; 
however, there are still barriers to its approach, as it continues to be underdiagnosed.
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Introduction

Obesity is a chronic multifactorial disease characterized 
by the excessive accumulation of body fat [1, 2], which 
increases the risk of cardiovascular disease, diabetes, 
obstructive sleep apnea, dyslipidemia, non-alcoholic fatty 
liver disease, cancer, and mental health problems [3–5].

The prevalence of overweight is 26.5%, and that of 
obesity is 12.5%, both of which have increased in recent 
decades [4]. In the Americas, the prevalence of obesity is 
22.4%, with higher rates in the United States (23.3%) and 
Mexico (18.4%) [4]. It mainly affects middle-aged adults in 
low-income countries and adults of all ages in high-income 
countries [3, 4]. In the United States, the prevalence of 

obesity among children aged 2–5 years is 12.7%, between 
6 and 11 years is 20.7%, and between 12 and 19 years is 
22.2% [3, 6–8]. In Southeast Asia, the prevalence of obesity 
in children and adolescents is between 3% and 5%; in the 
Western Pacific region, it ranges from 9% to 19%; in the 
Eastern Mediterranean region (North Africa and the Mid-
dle East), it is 11%; and in sub-Saharan Africa, it varies 
from 3% to 5% [9]. On the other hand, overweight/obesity 
affects 60% of adults and nearly one in three children (29% 
of boys and 27% of girls) in the World Health Organization 
European Region [10]. Additionally, in South America, the 
prevalence of obesity among children under 5 years of age 
is 9%, and for those over 5 years of age, it rises to 12% [11].

Modifiable environmental factors associated with obesity 
include excessive hypercaloric intake from sugar-sweetened 
beverages and fast food, as well as reduced energy expenditure 
due to automobile transportation and overuse of electronic 
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devices [2, 7]. Lifestyle has the capacity to induce revers-
ible changes in gene expression without affecting the DNA 
sequence, a phenomenon known as epigenetics [12]. Several 
genes implicated in obesity are epigenetically regulated [13]. 
Additionally, socioeconomic status, overweight in caregivers, 
birth weight, environmental pollution, infections, and stress 
all play a role in the development of obesity [2, 14].

The theory of an endogenous cause of obesity was first 
proposed by Von Noorden in 1907, and since then, it has 
been widely investigated [15]. Genetic causes associated 
with obesity account for 7% of cases of extreme obesity in 
children [16]. Inheritability ranges from 40% to 70%, with 
cultural transmission playing a minor role [17]. There are 
several gaps in the study of the genetic causes of obesity, 
such as lack of awareness, insufficient information on its 
pathophysiology, and limited access to specific genetic 
tests and effective treatments. Therefore, further research 
is necessary to improve our understanding of the genetic 
syndromes associated with obesity and to develop effective 
prevention and treatment strategies.

The goal of this review is to address the identified genetic 
causes of obesity and summarize the current literature about 
its physiopathology, classification, diagnosis, treatment, and 
precision medicine.

Pathophysiology

The leptin-melanocortin pathway (Fig. 1) plays a crucial role 
in regulating appetite and body weight. Leptin, a hormone 
produced in adipose tissue, binds to its main receptors located 
in the arcuate nucleus of the hypothalamus. This binding 
increases the production of proopiomelanocortin (POMC), 
which is then processed by proprotein convertase subtilisin 
and kexin types 1 and 2 (PCSK1 and PCSK2). This process-
ing results in the production of adrenocorticotropic hormone 
(ACTH) and melanocyte-stimulating hormone (MSH) [17]. 
These two hormones are collectively referred to as melano-
cortins. MSH acts centrally on the melanocortin type 4 recep-
tor (MC4R), which is highly expressed in the paraventricular 
nucleus of the hypothalamus. The activation of MC4R leads 
to reduced food intake and increased energy expenditure [17]. 
Brain-derived neurotrophic factor (BDNF) plays a signifi-
cant role in energy homeostasis [18]. It originates in the hip-
pocampus, is abundant in the hypothalamus and adipose tis-
sue, and acts on both MC4R and tropomyosin-related kinase 
B receptor (TrkB) to decrease food intake [19–22].

Oxytocin, produced by the hypothalamus in its para-
ventricular and supraoptic nuclei, acts centrally, activating 
brain areas that exert cognitive control over eating and 

Fig. 1  Leptin-melanocortin pathway. ACTH adrenocorticotropic hor-
mone, ArcN arcuate nucleus, BDNF brain-derived neurotrophic factor, 
LEPR leptin receptor, MC4R melanocortin 4 receptor, MSH melano-

cyte-stimulating hormone, PCSK1 proprotein convertase subtilisin/
kexin type 1, PCSK2 proprotein convertase subtilisin/kexin type 2, 
POMC proopiomelanocortin, PVN paraventricular nucleus
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increasing the activity of areas related to food reward, 
decreasing food intake [23]. In contrast, melanin-concen-
trating hormone originates in the lateral hypothalamus and 
acts centrally to increase appetite [24].

In addition to these hypothalamic pathways, other neural 
and gut hormonal pathways are involved in appetite regu-
lation (Fig. 2). Within the arcuate nucleus of the hypo-
thalamus, there are appetite suppressor neurons (produc-
ing POMC) and appetite stimulatory neurons [producing 
neuropeptide Y (NPY) and agouti-related peptide (AgRP)] 
[25]. Peripheral hormones derived from the gut and adipose 
tissue act centrally in the hypothalamus, affecting energy 
intake and expenditure [26]. Leptin stimulates POMC 
neurons and inhibits NPY/AgRP neurons, while insulin 
acts centrally, reducing intake by inhibiting NPY/AgRP 
neurons [25]. Gut hormones cholecystokinin, peptide YY, 
pancreatic polypeptide, glucagon-like peptide 1 (GLP-1), 
nesfatin 1, oxyntomodulin, and uroguanylin mediate satiety 
signals in the paraventricular nucleus of the hypothalamus 
in addition to the stimulation of insulin production [26–28]. 
Ghrelin is the only gut hormone that stimulates appetite 
through growth hormone-releasing hormone receptors on 
NPY neurons [29, 30]. Endocannabinoids regulate intake 
by activating reward pathways within the brain [31].

The intestine has an important role in energy metabo-
lism and is the habitat of a large resident microbiota, which 
includes species of Bacteroidetes, Firmicutes, Actinobacte-
ria, Proteobacteria, and Verrucomicrobia in a delicate bal-
ance [27, 32]. Obesity may be associated with an increase 
in Firmicutes and a decrease in Bacteroidetes [33, 34]. The 
alterations in the gut microbiota could impair the release of 
the previously described hormones, although these mecha-
nisms have not yet been fully elucidated [27, 35–37].

Classification of genetic causes associated 
with obesity

There are three subtypes of the genetic causes of obesity: 
syndromic Mendelian obesity, non-syndromic (monogenic) 
Mendelian obesity, and polygenic obesity [2, 38]. The first 
subtype is syndromic Mendelian obesity, which is caused by 
chromosomal abnormalities and rare variants of genes that 
encode crucial proteins involved in energy balance regu-
lation and whose inheritance follows a Mendelian pattern, 
either autosomal or X-linked [39]. These are rare pleiotropic 
syndromes involving reduced intellectual ability, dysmor-
phic features, and specific congenital alterations [39]. Non-
syndromic causes, also known as monogenic obesity, mani-
fest phenotypically when two dysfunctional copies of the 
genes are present in a homozygous or compound heterozy-
gous manner, are rare and are characterized by increased 
intake and obesity [38, 40]. Finally, polygenic obesity arises 
from the cumulative effects of multiple common genetic 
variants, does not have a clear inheritance pattern and is the 
most common form of obesity [41, 42].

There are several syndromes that have been described 
to date, some of which are yet to be named, while others 
have multiple names, contributing to confusion. The cor-
rect nomenclature for the newly identified genetic syndromes 
associated with obesity remains a subject of controversy [2].

Syndromic obesity

The most common cause of syndromic obesity is Prader-Willi 
syndrome (PWS), which affects 1 in 21,000 individuals, and it 
remains the primary cause of rapid deterioration and mortality 
in these patients [43]. PWS is characterized by severe neonatal 

Fig. 2  Other neural and gut pathways involved in appetite regulation. AgRP agouti-related peptide, CCK cholecystokinin, GLP-1 glucagon-like 
peptide 1, NF-1 nesfatin 1, NPY neuropeptide Y, OXM oxyntomodulin, POMC proopiomelanocortin, PP pancreatic peptide, PYY peptide YY, 
UGN uroguanylin
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hypotonia and age-related feeding abnormalities, including 
anorexia and failure to thrive in infancy, followed by severe 
hyperphagia, compulsivity, and central obesity between 4 
and 8 years of age, which appear to be the result of changes 
in intestinal hormones [38]. Ghrelin levels are usually sup-
pressed by food intake, but this does not happen in patients 
with PWS, all of whom have elevated ghrelin levels, occurring 
prior to the onset of heightened appetite. Most likely, the rise 
in ghrelin levels occurs early in infancy as a response to poor 
feeding, and persistent hyperghrelinemia promotes hyperpha-
gia and obesity later in childhood [44]. Patients with PWS 
also present an increase in resistin and adiponectin (lipogenic 
hormones) and a reduction in pancreatic polypeptide (anorexi-
genic hormone). No significant differences were found in the 
levels of leptin, obestatin, and peptide YY [44, 45].

Moreover, PWS may include facial dysmorphism, mild 
intellectual disability, behavioral abnormalities, delayed 
motor development, and hormonal deficiencies secondary to 
hypothalamic dysfunction. The latter includes central adre-
nal insufficiency, central hypothyroidism, short stature due 
to growth hormone deficiency, and hypoplasia of the geni-
tals resulting from hypogonadotropic hypogonadism [43, 
45–48]. There are several genes involved in PWS, located 
at chromosomal position 15q11.2. These genes include 
MKRN3 (makorin ring finger protein 3), MAGEL2 (MAGE 
family member L2), NDN (necdin), NPAP1 (nuclear pore 
associated protein 1), SNURF-SNRPN (SNRPN upstream 
reading frame-small nuclear ribosomal protein 1), and 
SNORD 116 (small nucleolar RNA, C/D box 116 cluster) 
[49–51]. The latter gene plays a crucial role in the regulation 
of food intake, and its microdeletion is associated with the 
development of the PWS phenotype [52].

Bardet-Biedel syndrome (BBS) is a rare autosomal reces-
sive ciliopathy characterized by retinal dystrophy (94%), 
central obesity (72%–89%), post-axial polydactyly (79%), 
learning difficulties (66%), hypogonadism and genitouri-
nary disorders (59%), renal dysfunction (52%), and other 
cardiovascular, neurological, gastrointestinal, and meta-
bolic disorders [53, 54]. Its prevalence varies depending 
on the consanguinity of the population [38, 55]. At birth, 
post-axial polydactyly is the only manifestation, and other 
features slowly appear in the first decade of life [54]. The 
gradual onset of night blindness, photophobia, and loss of 
central and/or color vision, which appear at 8.5 years of age, 
usually lead to a definitive diagnosis [38, 55, 56]. Three-
quarters of individuals with BBS present obesity, although 
birth weight is usually normal. The prevalence of type 2 dia-
betes, hypogonadism, cognitive deficits, behavioral lability, 
speech deficits, and renal and cardiac abnormalities is high 
[54]. To date, more than 20 mutations in genes associated 
with BBS have been described [57].

Alström syndrome (AS) shares clinical features with 
BBS, such as obesity and abnormalities related to vision, 

renal function, gonads, and height. However, the onset of 
visual problems in AS occurs earlier than in BBS, and unlike 
BBS, AS is not characterized by polydactyly and cognitive 
deficits [53, 58]. Additionally, individuals with AS may also 
present with hyperinsulinemia, type 2 diabetes mellitus, dys-
lipidemia, and hepatic steatosis [59, 60].

Cohen syndrome is characterized by developmental delay, 
cognitive and behavioral disturbances, and typical facies 
such as downward slanting palpebral fissures, mild maxil-
lary hypoplasia, prominent nasal root, micrognathia (with 
an open mouth expression that shows incisor prominence), 
myopia, and severe retinal dystrophy [61, 62]. Infants with 
Cohen syndrome often have low birth weight and failure to 
thrive due to feeding difficulties. Later in childhood, they 
may develop central obesity. Short stature, pubertal delay, 
testosterone deficiency, hypogonadotropic hypogonadism, 
and neutropenia are also commonly observed [61, 63].

Albright hereditary osteodystrophy (AHO) is character-
ized by a rounded face, short stature, stocky body, brach-
ydactyly, subcutaneous ossification, dental anomalies, 
delayed psychomotor development, and early-onset obesity 
and may include hypogonadism, other skeletal abnormali-
ties, and cataracts [64]. Conversely, it can present as pseudo-
hypoparathyroidism (PHP), characterized by hypocalcemia, 
hyperphosphatemia, and elevated parathyroid hormone [65]. 
If AHO presents without the hormonal alterations of PHP, it 
is known as pseudopseudohypoparathyroidism [64].

Fragile X syndrome (FXS), a common cause of mental 
retardation, is caused by an expansion of nucleotide repeats 
that leads to silencing of the FMR1 gene [66, 67]. Its most 
common features include a long face, large ears, joint hyper-
mobility, mitral valve prolapse, and macroorchidism [68]. 
At birth, infants may have hypotonia, poor sucking, and 
frequent regurgitation, and later, they may exhibit delayed 
psychomotor development, behavioral issues (such as autism 
spectrum disorders and compulsive disorders such as hyper-
phagia and aggressiveness), and 30%–60% may develop obe-
sity [68]. About 10% of individuals with FXS have severe 
obesity [69]. Males are typically more severely affected due 
to having a single X chromosome [68].

Rapid onset obesity with hypothalamic dysfunction, 
hypoventilation, autonomic dysregulation, and neural 
tumor (ROHHADNET) syndrome is a rare cause of syndro-
mic obesity [70]. Approximately 40% of ROHHAD patients 
present with ganglioneuroma or ganglioneuroblastoma [71]. 
The etiology of the syndrome has been postulated to involve 
epigenetic and autoimmune changes. However, candidate 
genes associated with neuronal development (BDNF and 
TrkB) or the hypothalamic and autonomic dysfunction path-
way (5-hydroxytryptamine receptor 1A, orthopedia, pituitary 
adenylate cyclase activating polypeptide, hypocretin, hypo-
cretin-receptor 1, hypocretin-receptor 2) did not show any 
significant genetic variants [72]. Despite ongoing research 
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efforts, the exact cause of this syndrome remains unclear, 
and no significant genetic findings have been reported to 
date. The main causes of syndromic obesity are described 
in Table 1. Less frequent causes are summarized in Table 2.

Monogenic obesity

Leptin deficiency is an extremely rare condition that is 
caused by mutations in the leptin gene [23, 77]. Heterozy-
gous mutations are associated with severe hyperphagia and 
early-onset obesity after normal birth weight, and homozy-
gous mutations, which are extremely rare, are also associated 
with frequent infections, hypogonadotropic hypogonadism, 
and mild hypothyroidism [78, 79].

Mutations in the leptin receptor gene (LEPR) are some-
what more common than congenital leptin deficiency, pro-
ducing similar manifestations in the presence of adequate 
or elevated leptin levels, being found in up to 3% of patients 
with severe early-onset obesity, without association with 
delayed psychomotor development [80, 81]. They also pre-
sent alterations in growth hormone and thyroid function 
[82].

Mutations in MC4R are the most common cause of mono-
genic obesity, which causes 2%–6% of cases of extreme 
childhood-onset obesity [38, 83]. Those with homozygous 
mutations have higher levels of obesity and hyperphagia, are 
usually taller than their peers and have no dysmorphisms, 
and those with heterozygous mutations almost always 
develop obesity and hyperphagia [84]. Extreme hyperin-
sulinemia and low blood pressure are also associated [85].

POMC deficiency syndrome is very rare and results in 
deficiency of its products, ACTH and MSH [38, 86]. In its 
homozygous form, it manifests with early ACTH deficiency, 
adrenal insufficiency, prolonged neonatal jaundice, hyper-
phagia, obesity, skin pallor, and reddish hair, the latter as a 
result of poor stimulation of melanocytes [23, 87]. Heterozy-
gous mutations may not include adrenal insufficiency and 
other classic manifestations [88].

The PCSK1 and PCSK2 genes encode proteases involved 
in the processing of neuropeptides and prohormones in 
endocrine tissues [89, 90]. Mutations in these genes alter 
the processing of gastric peptides and proinsulin, which can 
result in neonatal severe malabsorptive diarrhea, postpran-
dial hypoglycemia, and obesity [91]. In addition, they can 
lead to impaired growth, hypothyroidism, arginine vasopres-
sin deficiency, and hypogonadotropic hypogonadism [92]. 
Impaired POMC processing directly causes hyperphagia and 
early-onset morbid obesity [89, 93]. Mutations in the PCSK1 
gene are inherited in an autosomal recessive manner, while 
the mode of inheritance of PCSK2 mutations has not been 
described [89].

Although extremely rare, mutations in the genes encod-
ing TrkB and BDNF have also been implicated in the Ta
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development of obesity [94, 95]. In patients with WAGR 
syndrome, which includes Wilms’ tumor, aniridia, geni-
tourinary anomalies, and mental retardation, deletions of 
chromosome 11p responsible for BDNF haploinsufficiency 
are associated with lower levels of serum BDNF and with 
childhood-onset obesity [96].

Other mutations that have been discovered through exome 
and whole-genome sequencing are currently under study, 
such as mutations in kinase suppressor of Ras 2, tubby-like 
protein, carboxypeptidase, and retinoic acid-induced genes 
[38]. The main causes of monogenic obesity are described 
in Table 3.

Polygenic obesity

Polygenic obesity is the most common cause of obesity in 
childhood and occurs under the influence of both environ-
mental and genetic factors [99–101]. It is caused by the 

combined effects of mutations in multiple genes, each of 
which has a small isolated effect [resulting in an elevation 
of body mass index (BMI) of less than 0.5 kg/m2] [99–101]. 
The occurrence of polygenic obesity is characterized by 
inter-individual heterogeneity, which means that there are 
differences in the genetic variants present in different indi-
viduals [42, 101].

Variants of two genes, MC4R and the gene associated 
with fat mass and obesity (FTO), have been identified, 
and another gene, insulin-induced gene 2, is under study 
[102–105]. On the other hand, there are several phenotypes 
related to the different genes involved in polygenic obesity, 
which are thrifty (characterized by lower energy expendi-
ture), adipogenic (increased tendency to store fat), low lipid 
oxidation (reduced ability to burn fat for energy), sedentary 
habits, hyperphagic, obesity-related, increased body fat, 
increased BMI, increased waist circumference, and increased 
waist-hip ratio [106]. These phenotypes are not necessarily 

Table 2  Less frequent causes of syndromic obesity

ROHHADNET rapid onset obesity with hypothalamic dysfunction, hypoventilation, autonomic dysregulation, and neural tumor, PHF6 PHD 
finger protein 6, CdLS Cornelia de Lange syndrome, NIPBL nipped-B-like protein of chromosome 5, RAD21 human homolog of Schizosac-
charomyces pombe radiation-sensitive mutant 21, SMC3 structural maintenance of chromosomes 3, BRD4 bromodomain-containing protein 4, 
HDAC8 histone deacetylase 8, SMC1A structural maintenance of chromosomes 1A, AFF4 AF4/FMR2 family member 4, KAL1 kallmann-1, 
FGFR1 fibroblast growth factor receptor 1, FGF8 fibroblast growth factor 8, PROKR prokineticin receptor, PROK prokineticin, CREBBP 
CREB-binding protein, EP300 E1A-associated 300 kDa protein, WTI Wilms' tumor I, PAX6 paired box 6. a CHOPS syndrome is an acronym for 
the manifestations associated with this condition, including cognitive impairment, coarse facial features, heart defects, obesity, pulmonary prob-
lems, short stature, and skeletal abnormalities; b WAGR syndrome is an acronym for Wilms tumor, aniridia, genitourinary anomalies, and range 
of developmental delays

Variables Genes involved Mode of inheritance Clinical features

ROHHADNET syndrome [71] No significant variant in any gene None Hypothalamic dysfunction, central 
hypoventilation, autonomic dys-
function (thermal dysregulation, 
cardiovascular and gastrointestinal 
disturbances)

Borjeson–Forssman–Lehmann  
syndrome [73]

PHF6 X-linked Developmental delay, obesity, seizures, 
skeletal anomalies, hypogonadism, 
facial dysmorphism

Carpenter syndrome [74] RAB23 Autosomal recessive Brachydactyly and syndactyly, pre-axial 
polydactyly, cognitive impairment, 
obesity, congenital heart defects

Cornelia de–Lange syndrome [75] NIPBL-CdLS, RAD21-CdLS, SMC3-
CdLS, BRD4-CdLS, HDAC8-CdLS, 
SMC1A-CdLS

Autosomal dominant
X-linked

Microcephaly, short nasal bridge, highly 
arched palate, hearing loss, behavioral 
problems, micrognathia, obesity and 
overweight

CHOPS  syndromea [76] AFF4 Autosomal dominant Coarse facies, heart defects, short 
stature, cognitive impairment, obesity, 
skeletal dysplasia

Kallmann syndrome [69] KAL1, FGFR1, FGF8, PROKR2, 
PROK2

X-linked recessive
Autosomal recessive

Anosmia, hearing loss, renal agenesis, 
cleft lip or palate, obesity

Rubinstein–Taybi syndrome [76] CREBBP, EP300 Autosomal dominant Facial dysmorphism, broad thumbs and 
halluces, cognitive impairment, short 
stature, obesity

WAGR  syndromeb [69] WTI, PAX6 (because of 11p13 dele-
tion)

De novo deletion Wilms tumor, aniridia, ambiguous geni-
talia, mental retardation, hyperphagia 
and severe obesity
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separate from one another, and it is possible for an individual 
to display multiple phenotypes at the same time.

Diagnosis

Genetic causes of obesity are not usually considered unless 
there is developmental delay or dysmorphic features, which 
is why the Endocrine Society recommends looking for 
genetic causes in children with extreme obesity with onset 
before 5 years, hyperphagia, or a family history of extreme 
obesity. However, the problem is that hyperphagia has not 
been well defined, making it necessary to establish an opera-
tional definition [85].

BMI is recommended for diagnosing overweight and obe-
sity in adolescents and children aged 2 years and older [85]. 
It is calculated by dividing body weight in kilograms by 
the square of height in meters, although it does not provide 
information on body composition or fat distribution [107]. 
In adults, the World Health Organization defines obesity 
as a BMI greater than or equal to 30 kg/m2 [4, 107, 108]. 
In adolescents and children aged 2 years and older, over-
weight is defined by a BMI greater than or equal to the 85th 

percentile but less than the 95th percentile for age, obesity 
by a BMI greater than or equal to the 95th percentile for age, 
and extreme obesity if the BMI is greater than or equal to 
120% of the 95th percentile for age or greater than or equal 
to 35 kg/m2. In children under 2 years of age, overweight is 
defined by a weight-for-height greater than or equal to the 
85th percentile, and obesity is defined as greater than the 
97.7th percentile [85]. This is summarized in Table 4.

The presence of manifestations of a syndromic cause of 
obesity, such as developmental delay, dysmorphic features, 
and other hormonal deficiencies or vision loss, could guide 
the diagnostic approach [54]. Clinically based diagnos-
tic criteria exist for BBS and PWS [109–113]; however, 
genetic evaluation is necessary for diagnosis. Initially, 
microarray, MC4R gene mutation analysis, and leptin lev-
els should be evaluated [25]. Figure 3 presents a diagnos-
tic algorithm with the existing tests. Some of the condi-
tions described do not have commercially available tests. 
Whole-exome sequencing and next-generation sequencing 
should be performed to expand the possibility of finding 
the underlying cause in those where initial testing does not 
provide definitive results, but there is a high suspicion of 
a syndromic cause of obesity [25].

Table 3  Main causes of monogenic obesity

LEPR leptin receptor, MC4R melanocortin 4 receptor, POMC proopiomelanocortin, PCSK1 proprotein convertase subtilisin/kexin type 1, 
PCSK2 proprotein convertase subtilisin/kexin type 2, ACTH adrenocorticotropic hormone, MSH melanocyte-stimulating hormone

Variables Leptin deficiency 
[78, 79]

LEPR mutations 
[80, 81]

MC4R mutations
[83]

POMC deficiency
[86, 97]

PCSK1 mutations
[89, 90]

PCSK2 mutations
[98]

Cytogenetical 
location

7q31.3 1p31 18q21.3 2p23.3 5q15-21 20p11.2

Mode of 
inheritance

Autosomal 
recessive

Autosomal 
recessive

Autosomal 
dominant

Autosomal 
recessive

Autosomal 
recessive

Not described

Frequency Very rare 3% 2%-6% Very rare Very rare Very rare
Early-onset obesity Present, severe Present Present, extreme Present, severe Present Present
Hormonal  

dysfunction
Gonadal, thyroid Growth, thyroid Extremely elevated 

insulin
ACTH, MSH ACTH, growth, 

thyroid, gonadal
ACTH, growth, 

thyroid, gonadal
Other clinical 

features
Frequent infections Like leptin  

deficiency
Taller than peers Red hair, pale skin Severe malabsor-

tive diarrhoea, 
postprandial 
hypoglicemia

Severe malabsor-
tive diarrhoea, 
postprandial 
hypoglicemia

Table 4  Diagnosis of overweight and obesity according to body mass index (World Health Organization)

W/H weight for height

Variables Adults Adolescents and children ≥ 2 y Children < 2 y (W/H)

Overweight  ≥ 25 but < 30 kg/m2  ≥ p85 but < p95  ≥ p85
Obesity  ≥ 30 kg/m2  ≥ p95  ≥ p97.7
Extreme obesity  ≥ 40 kg/m2  ≥ 120% of the p95 or ≥ 35 kg/m2 –
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Treatment

Obesity is managed at three therapeutic levels: lifestyle 
modifications, pharmacological treatment, and bariatric sur-
gery [69, 114, 115]. The most important part of treatment 
is lifestyle modification, including dietary counseling and 
increased physical activity [85]. This requires commitment 
and adequate training of both the patient and their caregiv-
ers. Genetic defects can result in changes in energy utiliza-
tion and storage, and conventional caloric restriction may 
not be sufficient, necessitating more tailored dietary inter-
ventions. For example, in PWS, increased insulin sensitivity 
and lower resting energy expenditure make it necessary to 
adopt a low-carbohydrate diet to minimize the risk of obe-
sity [116, 117]; however, during infancy, infants may require 
support to ensure adequate nutrition and prevent failure to 
thrive [46]. BBS patients can benefit from a hypocaloric diet 
with restriction of simple sugars and regular aerobic exer-
cise (adapted if blindness is present) [54]. Individuals with 
mutations in the FTO gene can reduce their risk of obesity 
by simply increasing physical activity [118].

Alterations in the gut microbiota contribute greatly to 
obesity in children, making it a potentially effective target for 
management through interventions such as prebiotic or pro-
biotic supplementation or fecal transplantation [119–121].

If limiting weight gain and improving comorbidities 
have not been achieved after an intensive lifestyle change 

program, pharmacotherapy for obesity may be initiated 
[85]. Phentermine/topiramate, bupropion/naltrexone, lira-
glutide, and semaglutide are approved for use only in those 
older than 16 years with non-syndromic or monogenic obe-
sity, along with a lifestyle modification program, and their 
use should be discontinued and re-evaluated if there is no 
greater than 4% reduction in BMI/BMI Z score after use in 
full doses for at least 12 weeks [85]. In a 52 weeks multi-
center randomized clinical trial, liraglutide did not show a 
significant reduction in body weight in children and adoles-
cents with PWS compared to placebo, although it did reduce 
hyperphagia, requiring further studies to assess its possible 
benefit in this population [122].

Several drugs are under study for the management of obe-
sity associated with genetic factors. For instance, setmelano-
tide, an MC4R agonist, has demonstrated a significant reduc-
tion in body weight in patients with BBS [123]. However, 
no benefits have been found in patients with PWS, and the 
results in patients with AS have been inconclusive [123, 124]. 
Livoletide, an inactive ghrelin analog that functions by reduc-
ing the level of active ghrelin in the brain, did not demon-
strate any benefits in terms of hyperphagia and body weight 
in patients with PWS [124]. Congenital leptin deficiency can 
be managed with the use of recombinant leptin (metrelep-
tin), a safe and effective treatment for decreasing obesity and 
improving gonadal and immune function [125–127]. Individ-
uals with homozygous LEPR mutations do not benefit from 

Fig. 3  Diagnostic algorithm for the genetic-related causes of obe-
sity. AHO Albright hereditary osteodystrophy, AS Alström syndrome, 
BDNF/TrkB brain-derived neurotrophic factor/tropomyosin-related 
kinase B receptor, BMI body mass index, BBS Bardet-Biedl syndrome, 

CS Cohen syndrome, DNA deoxyribonucleic acid, FXS fragile X syn-
drome, LEPR leptin receptor, MC4R melanocortin 4 receptor, PCSK1-
2 proprotein convertase subtilisin/kexin types 1 and 2, POMC proopi-
omelanocortin, PWS Prader-Willi syndrome
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recombinant leptin treatment [38, 128]. Obesity due to MC4R 
mutations still has no therapeutic options for clinical practice 
[38]. Although there are no therapeutic options for mutations 
in the PCSK1 and PCSK2 genes in clinical practice, these are 
currently being studied [38]. Oxytocin is another potential 
treatment target [129, 130], as well as BDNF [131–134] and 
drugs with activity on the endocannabinoid system [31, 135, 
136]. Tirzepatide, a dual glucose-dependent insulinotropic 
polypeptide (GIP) and GLP-1 receptor agonist, and retatru-
tide, an agonist of the GIP, GLP-1, and glucagon receptors, 
show promising potential as treatments for obesity. However, 
currently, there are no studies on their use in obesity caused 
by genetic factors [126, 137].

Bariatric surgery is safe and effective in adolescents and 
adults [138–140] and is an option for those who have puber-
tal development in Tanner stage 4 or 5 and adult size, BMI 
greater than 40 kg/m2 or greater than 35 kg/m2 and extreme 
comorbidities, family stability, adherence to healthy life-
styles, access to a center with experience in pediatric bariatric 
surgery, and a multidisciplinary team for subsequent follow-
up [141–146]. It should not be performed in children and 
preadolescents, pregnant or lactating adolescents, those who 
do not demonstrate adherence to healthy lifestyles, and those 
who have any untreated psychiatric problems [85, 147, 148]. 
To avoid an unsuccessful operation, preoperative genetic test-
ing of patients with a history of early-onset obesity might be 
essential, especially considering the potential availability of 
novel pharmacological treatment options [149, 150].

A systematic review and meta-analysis demonstrated that 
laparoscopic sleeve gastrectomy (LSG), gastric bypass (GB), 
and biliopancreatic diversion (BPD) can safely achieve rapid 
weight loss in patients with PWS [151], with the most signifi-
cant weight loss occurring during the first year following sur-
gery [152]. As high ghrelin levels are responsible for hyper-
phagia, with 70% of ghrelin being produced by the stomach, 
procedures that involve partial gastrectomy, such as LSG and 
BPD, are more likely to result in reduced hyperphagia [153, 
154]. However, observational studies have indicated that the 
weight loss achieved in these patients is not sustainable in 
the long term, with results not maintained for periods of up 
to 5–10 years after the procedure [155, 156]. While some 
level of cognitive impairment may be present in PWS, cur-
rent guidelines no longer consider this a contraindication for 
bariatric surgery [147, 157]. It is crucial to conduct a careful 
assessment, involve the family, and provide follow-up in a 
multidisciplinary setting for these patients [117].

In a study that included 1014 patients undergoing bariatric 
surgery with a BMI > 50 kg/m2 and onset of obesity before 
the age of 10, 3% were found to have genetic obesity caused 
by heterozygous mutations in the MC4R, POMC, or PCSK1 
genes. The percentage of body weight loss after GB was not 
significantly different in patients with genetic mutations com-
pared to those without genetic obesity. Only patients with 

mutations in MC4R who underwent LSG showed less body 
weight loss compared to those without genetic causes, mak-
ing GB the preferred surgical option [158]. In a retrospective 
study, patients with obesity and biallelic variants in LEPR, 
POMC, and MC4R genes underwent bariatric surgery at a 
median age of 19 years. Although the surgery initially led 
to a median maximum reduction of 21.5 kg in body weight, 
there was a subsequent median weight regain of 24.1 kg over 
a maximum follow-up period of 19 years post-surgery [149].

Precision obesity medicine

Precision medicine aims to tailor preventive, diagnostic, and 
therapeutic approaches to an individual's unique characteris-
tics to enhance disease classification and optimize treatment 
outcomes by accounting for variability among patients [159]. 
The development of genetic study technologies allows us to 
approach personalized treatment, considering individual risk 
profiles so that the therapeutic response is optimal, which 
includes personalized prescription of diet, physical exercise, 
and drugs [160]. Although this is possible for disorders such 
as leptin deficiency, in general, it is still far from being a 
reality, but important progress is being made toward it [161].

Limitations

The small number of patients with rare genetic disorders 
makes it difficult to collect enough data to draw meaning-
ful conclusions. The cost and complexity of genetic testing 
make it challenging to identify and diagnose these condi-
tions. Additionally, there may be genetic and environmental 
factors that interact in complex ways to cause obesity, which 
makes it difficult to isolate the specific genetic factors that 
contribute to the condition. Finally, the naming and classi-
fication of these syndromes can be inconsistent and confus-
ing, which can make it difficult to communicate about these 
conditions and conduct research.

Conclusions

The population affected by obesity is increasing exponen-
tially, and obesity with a genetic cause is often underdiag-
nosed. One of the main reasons for this is that clinicians tend 
to view obesity as a disease that results from poor lifestyle 
choices and lack of self-management, and genetic factors are 
not always assessed. However, new treatments are currently 
under investigation that could potentially change the prog-
nosis for patients with obesity-associated genetic syndromes. 
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To date, many important aspects of the pathophysiology of 
obesity remain unknown, and there are several gaps in our 
understanding of the genetic causes of obesity. Therefore, 
further research is necessary.
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