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A B S T R A C T   

Aim: To evaluate the biochemical and hematological markers associated with the risk of death 
due to COVID-19 in a clinical cohort with a severe clinical profile. 
Methods: A retrospective study was conducted among 215 anonymized inpatient records from the 
Hospital Nacional Almanzor Aguinaga Asenjo, Peru, between April and June 2020. The associ
ation between biomarkers and death due to COVID-19 was assessed using Cox regression, with a 
multivariable modeling of 1) biochemical and 2) hematological markers. Kaplan-Meier analyses 
and time-dependent receiver operating characteristic curves were calculated for each associated 
biomarker (p < 0.05). 
Results: Data analysis of 215 inpatient records revealed an overall mortality rate of 51.30% (95% 
CI 44.70–58.50), a mean age of 63.90 ± 14.10 years, and a median oxygen saturation of 88% 
(interquartile range 82–92%). The best-fitted biochemical model included higher levels of C- 
reactive protein (CRP), D-dimer, fibrinogen, urea, and lactate dehydrogenase. Similarly, the best- 
fitted hematological model included higher absolute neutrophil and prothrombin time, and lower 
absolute platelet counts. The best area under the curve values in both models were found to be 
CRP and D-dimer values (>0.74) and the absolute neutrophil count (0.63). 
Conclusions: Some specific biochemical markers outperformed hematological markers. Evaluated 
hematological counts analyzed in multivariable models proved to be better markers and could be 
useful to discriminate COVID-19 patients at high risk of death.  

Abbreviations: ICU, intensive care unit; ACE-2, angiotensin-converting enzyme 2; IL, interleukin; CRP, C-reactive protein; CK, creatinine kinase; 
NLR, neutrophil/lymphocyte ratio; LDH, lactate dehydrogenase; ALT, alanine transaminase; AST, aspartate transaminase; CBC, complete blood 
count; HNAAA, Hospital Nacional Almanzor Aguinaga Asenjo; SpO2, oxygen saturation; RT-PCR, real time polymerase chain reaction; INR, In
ternational Normalized Ratio; IQR, interquartile range; RCS, restrictive cubic splines; ROC, receiver operating curves; AUC, area under the curve; 
aPTT, activated partial thromboplastin time; PT, prothrombin time; CI, confidence interval; HR, hazard ratio; aHR, adjusted hazard ratio; PPV, 
predictive positive value; PNV, predictive negative value. 
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1. Background 

The COVID-19 emergency has resulted in multi-level shortages of resources, leading to the collapse of health systems worldwide, 
notably in Latin America [1–3]. Peru has the highest standardized mortality rate globally, with 6552 deaths per 1 million inhabitants 
[4]. The lack of access to hospital care opportunities, the widespread use of therapies lacking scientific evidence, and self-medication 
contributed to poor outcomes in many patients [5,6]. 

SARS-CoV-2 infection is mediated by the interaction between the receptor-binding domain of the viral Spike protein and the human 
angiotensin-converting enzyme 2 (ACE-2) expressed in pneumocytes [7]. Infection induces the overproduction of proinflammatory, 
leading to a cytokine storm that can result in acute respiratory distress syndrome and multiple organ dysfunction [8,9]. The cascade of 
immunological and metabolic reactions produces key biomarkers that are over- and under-expressed during the evolution of COVID-19 
within the host. 

Several biomarkers associated with the severity and mortality of COVID-19 have been reported, mainly in single-site studies. In
flammatory markers include interleukins (IL) 1b/6/8, C-reactive protein (CRP), ferritin, creatinine kinase (CK), and the neutrophil/ 
lymphocyte ratio (NLR), while coagulation biomarkers include D-dimer, fibrinogen, and platelet count (thrombocytopenia). Indicators 
of cardiac compromise include troponin and lactate dehydrogenase (LDH). Predictors of bacterial co-infection include the lymphocyte 
count (lymphopenia) and procalcitonin, and liver damage is assessed by alanine (ALT) and aspartate transaminases (AST) [8,10,11]. 

For clinical decision-making, it is recommended to use mainly biochemical markers such as elevated levels of D-dimer, CRP, LDH, 
troponin, ferritin, and CK, as well as a decrease in absolute lymphocyte counts and an increase of NLR, as indicators of COVID-19 
severity [11–16]. However, further studies are needed to determine cut-off points in populations with severe clinical profiles and 
to confirm their real diagnostic power in larger populations. Despite the usefulness of these biomarkers, their determination is not 
available in health centers with low complexity levels. Therefore, it is fundamental to use accessible laboratory biomarkers to classify 
patients early according to their prognosis. 

In addition to biochemical markers, the complete blood count (CBC) provides valuable information related to inflammatory, in
fectious, and coagulation factors [8,17]. Hematological markers are routinely assessed upon admission and during the follow-up of all 
inpatients (moderate or severe) due to their suitability. Despite massive vaccination decelerating the spread of COVID-19, there are 
still primary care centers attending COVID-19 cases operating under precarious conditions. Therefore, it is essential to use accessible 
resources to support clinical decision-making and for the timely allocation of resources to patients at risk. Understanding the role of 
biomarkers as a clinical decision support tool will allow the early classification of COVID-19 cases requiring specific care according to 
their prognostic risk. The present study aimed to evaluate the prognostic value of biochemical and hematological markers in patients 
with severe clinical symptoms associated with mortality due to COVID-19. 

2. Methods 

2.1. Study design 

A retrospective cohort study was conducted at Hospital Nacional Almanzor Aguinaga Asenjo (HNAAA), which is part of the Seguro 
Social de Salud (ESSALUD), in the northern Peruvian city of Lambayeque. HNAAA has 404 hospitalization beds and 38 intensive care 
unit (ICU) beds to normally serve 660,506 insured persons. However, during the peaks of the COVID-19 pandemic, this hospital 
attended to any patient in need of hospital care in northern Peru, encompassing 1,197,260 inhabitants. 

2.2. Population 

Data from anonymized records of patients admitted to the hospital between April and June 2020 were evaluated. The study 
population consisted of inpatients admitted during the first wave of COVID-19 who manifested respiratory distress, oxygen saturation 
(SpO2) <93%, and a partial pressure of arterial oxygen/oxygen concentration ≤300 mmHg [18]. Clinically compatible COVID-19 
cases were confirmed using a rapid anti-SARS-CoV-2 antibody serological test (RT-PCR tests were not available) following national 
criteria [19]. All patients were followed throughout the entire course of their progression until hospital discharge (death or survival), 
and none were referred to another healthcare facility. 

2.3. Data 

Demographic and clinical data, as well as patient disposition (discharge or death), were extracted from medical records and directly 
digitized into a database. The laboratory parameters included in the study corresponded to the first results evaluated in hospitalized 
patients during the admission period, presenting severe or critical COVID-19. 

2.4. Variables 

Death due to COVID-19 was the primary outcome, and the date of death was recorded by the attending physician. Sex and 
comorbidities, as well as the presence of granulocyte precursors and atypical lymphocytes in peripheral blood, were considered as 
categorical covariates. Age, disease duration, length of hospitalization, SpO2, complete blood count (hemoglobin, hematocrit, 
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platelets, plateletcrit, leukocytes, lymphocytes, neutrophils, mean platelet volume, platelet distribution width, platelet large cell ratio), 
prothrombin time, partial thromboplastin time activated, International Normalized Ratio (INR), and biochemical markers (D-dimer, 
ferritin, LDH, urea, CRP, creatinine, ALT, AST, glucose) were analyzed as continuous variables. Reference ranges are found in 
Additional file 1. All laboratory biomarkers were evaluated using the first result at hospitalization. 

2.5. Statistical analysis 

Continuous variables were summarized as mean and standard deviation (SD) or median and interquartile range (IQR). Categorical 
covariates were summarized as absolute and relative frequencies. Bivariate analysis was performed using the Chi-square, Fisher exact, 
Student’s-t or median test, depending on the data. We addressed missing data with multiple imputations (Additional file 2). We also 
plotted linearity between all biomarkers and the outcome (Additional file 3). 

Patient survival was also estimated by comparing the tertiles of biomarkers using Kaplan-Meier. Log-rank test was calculated to 
determine global differences between survival curves without crossing patterns, and the Flemington-Harrington test for the crossed 
curves, which evaluates late differences (p < 0.001) [20]. 

Non-linear biomarkers were transformed into restrictive cubic splines (RCS) with four knots, and significant RCS variables, 
determined by the Wald test (p < 0.05), were then included for multivariable modelling. Multivariable models were generated using 
Cox regression and the nested model method with backward selection. A model composed of biochemical markers was built using all 
the variables from the database. Likewise, three models (A, B, and C) composed only of hematological markers (excluding biochemical 
markers) were built to evaluate indicators available in healthcare centers with low complexity levels. We modeled: A) all hemato
logical variables, B) variables excluding relative hematological values, and C) complete blood count values. The most parsimonious 
models were selected using the Wald test (p < 0.05) for a pool analysis of imputed datasets. 

Finally, the individual performance of explanatory biomarkers was evaluated by a time-dependent receiver operating curves (ROC) 
analysis (30 days), estimating the area under the curve (AUC) for each biomarker, sensitivity, and specificity for an optimal cut-off 
point according to the Youden index, as implemented in the package sttroccurve [21]. Also, positive and negative predictive values 
were estimated. All analyses were conducted using Stata software v.17 (Stata Corp. College Station, TX). 

2.6. Ethics 

The study protocol received approval from the Ethics and Research Committee of the Red Prestacional Lambayeque - Hospital 

Table 1 
Characteristics and biochemical markers of the study population.   

Total n = 215 (%) Survivors n = 104 Deaths n = 111 Pb 

Age (years) 63.90 ± 14.14 60.06 ± 14.49 67.50 ± 12.86 <0.001 
Sex 
Women 61 (28.37) 32 (52.46) 29 (47.54) 0.450 
Men 154 (71.63) 72 (46.75) 82 (53.25)  
Disease duration (days)a 9.06 ± 4.06 8.55 ± 3.76 9.54 ± 4.30 0.078 
Length of hospital stay (days) 11 [6–18] 14 [8–21] 8 [5–14] <0.001 
Comorbidities 
Obesity 21 (9.77) 7 (33.33) 14 (66.67) 0.147 
Diabetes mellitus 51 (23.72) 22 (43.14) 29 (56.86) 0.392 
Hypertension 82 (38.14) 32 (39.02) 50 (60.98) 0.031 
Chronic kidney disease 21 (9.77) 4 (19.05) 17 (80.95) 0.005 
Other pulmonary diseases 21 (9.77) 12 (57.14) 9 (42.86) 0.397 
N◦ comorbidities 
0 78 (36.28) 40 (51.28) 38 (48.72) 0.057 
1 89 (41.40) 48 (53.93) 41 (46.07)  
≥2 48 (22.33) 16 (33.33) 32 (66.67)  
Oxygen saturation (%) 88 [82–92] 90 [88–94] 85 [79–90] <0.001 
Fibrinogen (mg/dl)a 519 [400–654] 488.5 [372–640] 567 [450–700] 0.210 
D-dimer (ug/ml)a 2.30 [1.36–4.56] 1.40 [0.90–2.42] 4 [2.20–5] <0.001 
Lactate dehydrogenase (U/L)a 350 [256–467] 273 [225–350] 439.50 [345–526] <0.001 
C-reactive protein (mg/dl)a 10.70 [4.20–17.7] 5 [1.50–11] 15.80 [10.20–22.30] <0.001 
Urea (mg/dl)a 40.85 [30.90–56.80] 35.90 [27.60–44.80] 49.60 [33–66.40] <0.001 
Ferritin (mg/dl)a 1330 [800− 2000] 850 [689− 1300] 1952.50 [1409–2000] <0.001 
Aspartate aminotransferase (U/L)a 32.65 [21.10–51] 32.70 [21–51] 32.60 [22–51] 1.000 
Alanine aminotransferase (U/L)a 41 [23–69] 45 [24–81.30] 37 [22–62] 0.274 
Glucose level (mg/dl) 129 [105–171] 123.50 [101.50–166] 135 [106–175] 0.303 
Creatinine level (mg/dl)a 0.69 [0.55–0.92] 0.66 [0.51–0.82] 0.73 [0.58–1.02] 0.109 

Data is presented as n (%), mean ± standard deviation (SD), and median [IQR]. 
a Missing data was identified in the following variables: length of the disease = 2, SpO2 = 1, D-dimer = 6, fibrinogen = 9, LDH = 2, CRP = 13, urea 

= 1, ferritin = 24, ALT = 1, AST = 1, creatinine = 5. 
b Bivariate analysis was performed using Student’s-t and Median test for continuous variables with normal and non-normal distribution, respec

tively, and Chi-square for categorical variables. 
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Nacional Almanzor Aguinaga Asenjo, determination N◦ 026-CIEI-RPLAMB. Since the analysis was conducted with anonymized data, 
the Ethics Committee provided an exemption from the informed consent procedure. 

3. Results 

3.1. Epidemiological characteristics 

The data of 215 patients were analyzed, identifying the proportion of death at 51.60% (95% CI 44.70–58.50), and the overall 
fatality rate at day 30 in 66.60% (95% CI 57.70–75.40). The mean age was 63.90 years (SD 14.14) and the median SpO2 determined at 
admission was 88%. (Table 1). 

3.2. Laboratory findings 

Overall, the study population presented a severe clinical picture represented by leukocytosis, neutrophilia and severe lymphopenia. 
Coagulation markers such as platelet count, plateletcrit and PT ranged between normal values. However, the overall median fibrinogen 
levels exceeded references ranges (>500 mg/dl). Among biomarkers associated with COVID-19 severity, all the patients presented 
elevated CRP levels (>0.5 mg/dl), indicating the presence of an advanced inflammatory process at the time of admission (Tables 1 and 
2). 

3.3. Biomarkers and mortality by COVID-19 

Leukocytosis and neutrophilia at admission were significantly higher among fatal cases (p < 0.001). Additionally, the NLR was 
higher among fatal cases, with a median of 15.43 (p = 0.01). Overall, patients with a poor prognosis had lower platelet counts, lower 
plateletcrit, and a longer PT than those who survived (p < 0.05) (Table 1). Coagulation alterations were higher among the fatal cases, 
presenting three times the median of survivors (both above the normal value < 0.50 μg/ml). Besides, CRP, ferritin, urea, and LDH 
values were severely elevated in non-survivors. In the bivariate analysis of survival vs. death, D-dimer, CRP, ferritin, urea and, LDH 
showed statistical significance p < 0.001 (Table 1), contrary to what was identified in granulocyte precursors and atypical lymphocytes 
in peripheral blood (Table 2). 

3.4. Kaplan-Meier survival analysis 

Differences in the mortality rate were observed along survival functions for SpO2 and tertile biomarkers. As expected, the survival 
of patients from the lowest SpO2 tertile (≤55%) was lower than the high (≥91%) and medium (56–90%) tertiles. Regarding the 
explanatory biomarkers, survival was much higher in patients with lower D-dimer and fibrinogen, and higher CRP. The survival curves 

Table 2 
Hematological count, presence of granulocyte precursors and atypical lymphocytes on peripheral blood.   

Total n = 215 (%) Survivors n = 104 Deaths n = 111 Pb 

Hemoglobin level (g/dL) 13.28 ± 1.89 13.27 ± 1.83 13.28 ± 1.95 0.955 
Hematocrit % 40 [37–43] 40 [37–42.85] 40 [37–43] 0.951 
White blood cell count x 103/μl 11.71 [8.50–16.18] 9.79 [7.41–12.69] 13.90 [10.97–19.12] <0.001 
Relative lymphocyte count (%) 6 [4–10] 7 [4–12] 5 [3–8] 0.006 
Absolute lymphocyte count x 103/μl 0.71 [0.45–1.12] 0.69 [0.44–1.13] 0.71 [0.45–1.11] 0.538 
Relative neutrophil count (%) 89 [84–93] 87 [80–93] 91 [86–94] 0.003 
Absolute neutrophil count x 103/μl 10.30 [7.30–14.49] 8.42 [6.29–11.61] 12.78 [9.39–16.44] <0.001 
Neutrophil/Lymphocyte ratio 14.50 [8.40–23.51] 12.79 [7.09–23.12] 15.35 [9.89–30.37] 0.012 
Platelet count x 103/μl 322.11 ± 120.10 349.54 ± 124.72 296.41 ± 110.07 0.001 
Mean platelet volume 9.67 ± 1.10 9.68 ± 1.16 9.67 ± 1.04 0.935 
Platelet distribution width 16.30 [16.10–16.60] 16.30 [16–16.50] 16.40 [16.10–16.60] 0.183 
Plaquetocrit % 0.30 ± 0.10 0.33 ± 0.11 0.28 ± 0.10 <0.001 
Platelet large cell ratio % 24.33 ± 7.07 24.08 ± 7.31 24.56 ± 6.87 0.619 
Prothrombin timea 11.10 [10.40–12.10] 10.85 [10.20–11.50] 11.45 [10.60–12.40] 0.006 
Partial thromboplastin time activateda 1 [0.90–29.70] 1 [0.90–29.50] 1 [0.90–29.70] 0.396 
International normalized ratio for coagulation factorsa 26 [1–32] 24.50 [0.90–30] 27.60 [1–34.40] 0.150 
Atypical lymphocytes 132 (61.68) 60 (45.45) 73 (54.55) 0.243 
Promyelocytes 1 (0.47) 0 (0) 1 (100) NA 
Myelocytes 48 (22.43) 26 (54.17) 22 (45.83) 0.381 
Metamyelocytes 54 (25.23) 28 (51.85) 26 (48.15) 0.580 
Band form neutrophils 123 (57.75) 53 (43.09) 70 (56.91) 0.050 

Data is presented as n (%), mean ± standard deviation (SD), and median [IQR]. 
a Missing data was identified in the following variables: PT = 1, aPTT = 1, INR = 2, promyelocytes = 1, myelocytes = 1, metamyelocytes = 1, band 

form neutrophils = 2. 
b Bivariate analysis was performed using Student’s-t and Median test for continuous variables with normal and non-normal distribution, respec

tively, and Chi-square for categorical variables. 
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for the other markers did not show sustained trends at each tertile over time (Fig. 1). 

3.5. Non-adjusted and adjusted Cox regression models 

For each additional year in age at hospital admission, the risk of mortality increased by 2% (p = 0.05). Moreover, a high SpO2 was 
associated with greater protection against death (3% less risk for each additional unit in the percentage of SpO2, p < 0.001). He
matological markers, including the absolute leukocyte count, relative and absolute lymphocyte count, relative and absolute neutrophil 
count (8% greater risk for each 103 cell increase), platelets, plateletcrit, and PT, were significantly associated with mortality (p < 0.05). 
Likewise, biochemical markers such as D-dimer (14% higher risk for each increase in one unit), fibrinogen, LDH, CRP, urea, ferritin, 
and creatinine (p < 0.005) were also associated with mortality (Table 3). 

Several adjusted regression models were built with the incorporation of variables following technical criteria. One model composed 
of the most explanatory biochemical markers for mortality by COVID-19 included: low SpO2, and high levels of D-dimer, fibrinogen, 
CRP, urea, LDH and platelet count (Table 4a). In addition, models were built using only hematological markers, resulting in three 
explanatory models composed of hematological markers associated with risk for death, accompanied by low SpO2. Explanatory 
covariates of mortality by COVID-19 included: A) and B) both models converged in selecting high number of neutrophils, low platelet 
count and longer PT; and C) high number of neutrophils and low platelet count. (Table 4b). Moreover, the dynamic relationship 
between RCS of SpO2, D-dimer, CRP and LDH are shown in Fig. 2. 

3.6. Time-dependent ROC 

At day 30, the individual explanatory variable with the largest AUC was CRP (0.79), with similar sensitivity and specificity. Other 
biomarkers displaying an AUC above 0.70 were D-dimer and LDH. On the other hand, hematological markers shaping models A, B and 
C, generally had low individual performances (AUC ~0.60). The absolute neutrophil count best explained COVID-19 mortality at day 
30. Complete information regarding the biomarkers’ prognostic capacity is detailed in Table 5. The different ROC curves are shown in 
Fig. 3. 

Fig. 1. Kaplan-Meier survival analysis for explanatory biomarkers categorized in tertiles. Log-rank test was calculated to determine global dif
ferences between survival curves without crossing patterns (SpO2, D-dimer, LDH, CRP; p < 0.001), and the Flemington-Harrington test for the 
crossed curves, which evaluates late differences (fibrinogen, urea, neutrophil count, platelet count and prothrombin time; p < 0.001). 
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4. Discussion 

The current study aimed to identify blood markers associated with COVID-19 mortality during the first wave of the pandemic in 
Peru during 2020. This is also one of the few studies to evaluate a cohort severely compromised by COVID-19 at hospital admission [6, 
22], considering the absence of widespread vaccination and during the circulation of more virulent SARS-CoV-2 strains. Due to 
limited-resources, Peru and other low- and middle-income countries struggled to provide adequate healthcare to COVID-19 patients. In 
these settings, the identification of critical patients based on available platforms, such as the use of hematological and biochemical 
markers, is essential to determine various levels of hospital care. 

The overall hospital mortality proportion was high compared to other countries [23–26], but consistent with Peruvian studies; 
46–49.59% in Lima [22,27] and 9% lower in the North Coast [6]. The elevated mortality proportion (51.60%) was due to the 
downgrading of hospital attention, which forced affected people to use in-house oxygen therapies and non-evidence-based drugs [5,6]. 
Delay in hospital management and increased disease duration influenced the high mortality rate compared to other contexts [28]. 

Oxygen saturation is the most important predictor of poor outcomes due its relation to alveolar deterioration, allowing the 
identification of cases with the greatest need for ventilatory support. The association of SpO2 <85% with a higher risk of death by 
COVID-19 was previously reported [12,22]. Dysregulation of immune response mediated by IL-6 induces an elevation of CRP [8] and 

Table 3 
Non-adjusted analysis of biomarkers associated with mortality by COVID-19.   

COVID-19 mortality 

HR 95% CI p 

Age (years) 1.02 (1.01–1.03) 0.005 
Sex 
Women Ref   
Men 1.00 (0.65–1.53) 0.997 
Disease duration (days)a 1.03 (0.99–1.07) 0.122 
Comorbidities 
Obesity 1.65 (0.94–2.90) 0.081 
Diabetes mellitus 1.01 (0.66–1.54) 0.968 
Hypertension 1.30 (0.89–1.90) 0.169 
Chronic kidney disease 1.97 (1.17–3.31) 0.010 
Other pulmonary disease 0.87 (0.44–1.73) 0.700 
N◦ comorbidities 
0 Ref   
1 0.93 (0.60–1.45) 0.757 
≥2 1.23 (0.77–1.99) 0.387 
Oxygen saturation (%)a 0.97 (0.95–0.98) <0.001 
Hemoglobin (g/dL) 0.98 (0.90–1.08) 0.743 
Hematocrit (%) 1.00 (0.97–1.04) 0.885 
White blood cell count x 103/μl 1.07 (1.04–1.11) <0.001 
Relative lymphocyte count (%) 0.94 (0.89–0.98) 0.004 
Absolute lymphocyte count x 103/μl 1.07 (0.75–1.51) 0.723 
Relative neutrophil count (%) 1.04 (1.01–1.07) 0.008 
Absolute neutrophil count x 103/μl 1.08 (1.05–1.12) <0.001 
Neutrophil/Lymphocyte ratio 1.01 (0.997–1.02) 0.160 
Platelet count x 103/μlb 0.98 (0.96–0.99) 0.003 
Mean platelet volume 1.00 (0.84–1.20) 0.981 
Platelet distribution width 0.99 (0.86–1.14) 0.923 
Plaquetocrit % 0.06 (0.01–0.34) 0.002 
Platelet large cell ratio 1.00 (0.98–1.03) 0.728 
Prothrombin timea 1.03 (1.001–1.06) 0.044 
Partial thromboplastin time activateda 1.00 (0.99–1.02) 0.464 
International Normalized Ratio for coagulation factorsa 1.00 (0.99–1.01) 0.536 
Fibrinogen (mg/dl)a,b 1.02 (1.01–1.03) 0.002 
D-dimer (ug/ml)a 1.14 (1.09–1.19) <0.001 
Lactate dehydrogenase(U/L)a,b 1.02 (1.02–1.03) <0.001 
C-reactive protein (mg/dl)a 1.06 (1.04–1.07) <0.001 
Urea (mg/dl)a,b 1.07 (1.04–1.10) <0.001 
Ferritin (mg/dl)a,b 1.01 (1.01–1.02) <0.001 
Aspartate aminotransferase (U/L)a 1.00 (0.996–1.01) 0.760 
Alanine aminotransferase (U/L)a 1.00 (0.99–1.000) 0.067 
Glucose (mg/dl) 1.00 (0.999–1.002) 0.243 
Creatinine (mg/dl)a 1.06 (1.002–1.12) 0.040 

HR, hazard ratio; CI, confidence interval. 
The non-adjusted analysis was conducted using Cox regression, which included imputed datasets. Values in bold indicate significant associations (p <
0.05). 

a Data with missing values. 
b Variables scaled/10 to better interpret the HR. 
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ferritin levels >800 μg/L [29], observed in patients with severe or fatal COVID-19. CRP, a fast-increasing acute inflammatory indi
cator, exhibited in our study the highest levels identified in COVID-19 patients to date [12,24]. In our study, the role of fibrinogen 
predicted the risk of death in the study population. Similarly, high D-dimer levels produced during fibrin degradation suggest 
thrombosis and thrombolysis [8] and are associated with lower survival [12]. In our study, the results suggested that even patients who 
survived could be at risk of thrombosis on admission; however other features should be considered. LDH suggests vital organ injury, in 
which overregulation of the glycolytic pathway leads to a lack of oxygenation and multi-organ failure in severe COVID-19 patients 
[10]. However, in our cohort, LDH values remained within the reference ranges. On the other side, elevated urea indicates misfunction 
of kidney metabolism and is related to COVID-19 severity [30], alone or along with the albumin as a ratio [30,31]. In the study 
population, urea values were severely increased on admission among survivors and patients who died. Although patients seeking 
clinical care exhibited low SpO2 at hospital admission, many had access to portable oxygen during home care, which could have 
prevented organ injury before hospitalization. 

Neutrophilia and Lymphopenia are caused by the dysfunction of the innate and adaptive immune response in severe COVID-19 
patients, respectively [10,32]. In our study, survivors and fatal cases presented neutrophilia and lymphopenia, which was inconsis
tent with previous studies [33–35]. Our study population also presented very high NLR values, which have also been described before 
[11,36]. The lack of association of these values with the risk of death could be possibly because the entire population presented critical 
profiles on admission. Thrombocytopenia after inflammatory overregulation is controversially related to peripheral platelet con
sumption and thrombotic events among COVID-19 patients with poor outcomes [17,25,33,35,37]. A significant association has been 
reported between prolonged PT, a coagulopathy indicator, and an unfavorable prognosis, even when the PT values are within the 
reference range [35,38]. 

Thus, the evaluation of the prognostic potential for SpO2 was previously estimated as an AUC of 0.70 [12], which is compatible 
with our results (AUC 0.69). The reliability of CRP values is widely inconsistent, documenting good performances (AUC 0.86–0.92) in 
some studies [8,12] and weak performances (AUC 0.69) in others [33]. In our study, the AUC of CRP showed fair accuracy (0.79). 
Many reports have proposed the D-dimer cut-off to be somewhere between 0.67 and 2.03 μg/ml, with an AUC between 0.81 and 0.88 
[8,12,39], showing better performance than in our study. Similarly, the AUC for LDH, ferritin, and NLR were estimated to be between 
0.62 and 0.64, with only the absolute neutrophil count presenting an AUC of 0.53 [33]. Likewise, the AUC for urea was estimated at 
0.69–0.78 [30,31]. Another study calculated the AUC for NLR at 0.77 [17], showing that this estimate can significantly differ from 
study to study. The platelet count in one study showed an AUC of 0.81 [17], presenting much better performance than in our study. 
Therefore, the efficiency of CRP, urea, LDH and D-dimer, the best-performing biomarkers, only achieved fair accuracy (none exceeded 
the accepted 80%). In relation to hematological markers, the individual diagnostic ability was not found to be good, with only the 
absolute neutrophil count showing a regular performance (AUC 0.63), albeit better than previous reports [33]. 

Models composed of combined covariates associated with the risk of mortality by COVID-19 aim to generate predictive tools 
capable of predicting poor COVID-19 outcomes. These models include different combinations of IL-6, CRP, D-dimer, absolute 
neutrophil count, and others, showing a generally good sensitivity and specificity (>90%) [8,35,40,41]. However, confirming the 
efficiency of these models requires an adequate modeling process and a comprehensive external validation [42]. The validation 
process reduces the overfitting of AUC estimation in training samplings, and thus, corrects the performance values. Other studies 
sought to generate models using only values of the CBC, the analysis of which is much more accessible, finding neutrophils, lym
phocytes, and platelets to be explanatory variables for progression to unfavorable outcomes [37,43]. The multivariable models 
constructed in the present study did not report AUC values, as it was not possible to carry out external validation that would allow 
calculating the real AUC. Furthermore, internal validation of these models was beyond the aims of this study. 

4.1. Limitations 

The use of retrospective data remains a significant limitation that could impact data quality and introduce information bias. 
However, given the study context, a retrospective design was the only feasible option. Despite the challenges it entails, we anticipate 

Table 4a 
Adjusted analysis of biochemical markers associated with COVID-19 mortality.   

COVID-19 mortality – biochemical markers 

HR 95% CI p aHR 95% CI p 

Oxygen saturation (%) 0.97 (0.95–0.98) <0.001 b   
D-dimer (ug/ml) 1.14 (1.09–1.19) <0.001 b   
Fibrinogen (mg/dl)a 1.02 (1.01–1.03) 0.002 1.01 (1.002–1.03) 0.017 
C-reactive protein (mg/dl) 1.06 (1.04–1.07) <0.001 b   
Lactate dehydrogenase (U/L)a 1.02 (1.02–1.03) <0.001 b   
Urea (mg/dl)a 1.07 (1.04–1.10) <0.001 1.08 (1.03–1.13) 0.003 

HR, hazard ratio; aHR, adjusted hazard ratio; CI, confidence interval. 
The multivariable (adjusted) model composed by biochemical markers was generated using Cox regression and the nested model method with 
backward selection. The most parsimonious model was selected using the Wald test (p < 0.05) for a pool analysis of imputed datasets. Values in bold 
indicate significant associations (p < 0.05). 

a Variables scaled/10 to better interpret the HR. 
b Dynamic aHR estimations are illustrated in Fig. 2 for variables transform in restrictive cubic splines due to their lack of linearity. 
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Table 4b 
Adjusted analysis of hematological markers associated with COVID-19 mortality.   

COVID-19 mortality – hematological markers 

Non-adjusted Model Model A Model B Model C 

HR 95% CI p aHR 95% CI p aHR 95% CI p aHR 95% CI p 

Oxygen saturation (%) 0.97 (0.95–0.98) <0.001 b   b   b   
Absolute neutrophil count x 103/μl 1.08 (1.05–1.12) <0.001 1.09 (1.05–1.13) <0.001 1.09 (1.05–1.13) <0.001 1.09 (1.05–1.13) <0.001 
Platelet count x 103/μla 0.98 (0.96–0.99) 0.003 0.98 (0.97–0.999) 0.043 0.98 (0.97–0.999) 0.043 0.98 (0.97–0.999) 0.037 
Prothrombin time (s) 1.03 (1.001–1.06) 0.044 1.05 (1.01–1.08) 0.007 1.05 (1.01–1.08) 0.007    

HR, hazard ratio; aHR, adjusted hazard ratio; CI, confidence interval. 
The multivariable (adjusted) models composed by hematological markers were generated using Cox regression and the nested model method with backward selection. Variables were specified according 
to the following criteria: Model A, modeling included all hematological variables; Model B, global modeling excluding variables expressing relative values; Model C, modeling including only complete 
blood count. The most parsimonious models were selected using the Wald test (p < 0.05) for a pool analysis of imputed datasets. Values in bold indicate significant associations (p < 0.05). 

a Variables scaled/10 to better interpret the HR. 
b Dynamic aHR estimations are illustrated in Fig. 2 for variables transform in restrictive cubic splines due to their lack of linearity. 
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Fig. 2. Non-linear associations between biomarkers and death by COVID-19. Restricted cubic spline models fitted for Cox proportional hazards 
models with four knots for three significant non-linear associations from the principal analysis. We used as reference values the cut-offs estimated for 
ROC analysis, on the left, plots generated with case-complete data, and on the right side, plots generated with imputed datasets. Only SpO2 and D- 
dimer represent a reliable continuous relationship with HR estimations. Lower SpO2 % represents a higher risk, which is dynamic depending on the 
sample size (values < 75% lack of precision). On the contrary, higher D-dimer values are related dynamically to death by COVID-19 (values >9ug/ 
ml risk of lacking precision). 
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that any registration errors are distributed uniformly. The inclusion of patients from a single site may induce selection bias; therefore, 
further research is needed to confirm these findings in diverse cohorts. Additionally, we identified the potential existence of Neyman 
bias, where the study population, more severely affected by COVID-19 might have been at higher risk of death. This inadvertently led 
to the exclusion of related biomarkers from the analysis. Undetermined markers, such as IL-6 (which presented the best AUC identified 

Table 5 
Sensitivity and specificity of the explanatory biomarkers.   

Cut-off AUC Sensitivity Specificity PPV NPV 

Oxygen saturation (%) <89 0.69 64.10% 71.20% 70% 65% 
D-dimer (ug/ml) >1.98 0.74 80.60% 64.30% 71% 76% 
Fibrinogen (mg/dl) >487 0.62 68.30% 53.90% 61% 61% 
C-reactive protein (mg/dl) >9.90 0.79 74.10% 73.20% 75% 73% 
Lactate dehydrogenase (U/L) >346 0.76 68.80% 82.20% 80% 71% 
Urea (mg/dl) >45 0.55 58.80% 52.50% 57% 54% 
Absolute neutrophil count x 103/μl >11.16 0.63 51.20% 69.20% 64% 57% 
Platelet count x 103/μl <319 0.60 63.90% 58.70% 62% 60% 
Prothrombin time (s) <10.90 0.62 62.30% 57.20% 61% 59% 

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value. 
The individual performance of explanatory biomarkers was evaluated by a time-dependent receiver operating curves (ROC) analysis (30 days), 
estimating the area under the curve (AUC) for each biomarker, sensitivity and specificity for an optimal cut-off point according to Youden index as 
implemented in the package sttroccurve. 

Fig. 3. ROC curves of explanatory biomarkers at day 30. The individual performance of explanatory biomarkers was evaluated by a time-dependent 
receiver operating curve. None of them exceeded individually 0.79 of AUC. 
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0.931) [12], albumin, troponin, and others, were not measured. The inclusion of these markers is uncommon in routine clinical 
practice (troponin, for example, had 86% missing data in our study), and their incorporation does not align with the objective of 
identifying biomarkers available in resource-limited hospital settings. 

As a result, we were unable to extract the medical indication for admission or determine actual ICU admissions. Local studies 
indicate that around 64% of patients may require ICU care, but only 3.30–10.20% are admitted [6,22,27]. In terms of statistical 
analysis, we employed a traditional variable selection strategy for multivariable modeling, which may overestimate associations. 
However, we opted for a backward method, considered preferable over the forward method [44], as our dataset included numerous 
candidate variables that could potentially serve as prognostic factors. Nonetheless, our data will be made available for independent 
groups to conduct alternative statistical analyses, contributing to a more comprehensive understanding of the role of biomarkers in 
poor COVID-19 outcomes within the scientific community. 

Laboratory biomarkers are linked to the risk of death from COVID-19, and these parameters hold significant prognostic value. 
However, this association is primarily observed with biochemical markers, which are not routinely included in laboratory monitoring 
for COVID-19 patients in low- and middle-income hospitals. Hematological markers, being more cost-effective, monitor parameters 
uniformly for all inpatients. Every patient, regardless of their clinical condition, has equal priority for the determination of these 
parameters. While the AUC of each hematological marker associated with the risk of COVID-19 mortality did not exhibit high accuracy, 
combined covariates demonstrated a good fit. Moreover, the models constructed could be validated in other cohorts. Our study 
highlights that hematological markers can elucidate mortality from COVID-19 and are valuable in aiding clinical decision-making to 
prioritize critical care for COVID-19 patients. These tools, alongside other public health initiatives, will bolster a rapid response and 
facilitate preparedness strategies for the ongoing COVID-19 emergency and future pandemics. 

5. Conclusion 

Biomarkers associated with the risk of mortality were identified in the severe COVID-19 cohort. Multivariable models revealed that, 
in addition to oxygen saturation, hematological counts—such as the absolute neutrophil count, platelet count, and PT—assessed at 
hospital admission exhibited a good fit and held significant prognostic value in discriminating patients at risk of death from COVID-19. 
When considering individual prognostic performance, biochemical markers outperformed hematological parameters. 
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